FIXED POINTS OF AUTOMORPHISMS OF LINEAR GROUPS

Sarah J. Gottlieb

INTRODUCTION

In the author's paper, Algebraic Automorphisms of Algebraic Groups with Stable Maximal Tori, a counterexample due to D. Winter was given, showing the existence of a solvable linear group in characteristic 2, with automorphism σ , which has two σ -stable maximal tori not conjugate by a σ -fixed point.

This paper generalizes that group for any characteristic p > 0. We define first an upper triangular group \mathfrak{G} in $GL(p(p+1), \kappa)$ consisting of p diagonal block matrices, each block being upper triangular in $GL(p+1, \kappa)$. We then define a rational representation θ on \mathfrak{G}_u , the unipotent part of \mathfrak{G} :

$$\theta: (\mathfrak{G}_{n}, \cdot) \to (\kappa, +).$$

Our desired group is $G = T \cdot U$ where T is the diagonal maximal torus of \mathfrak{G} and U is the kernel of \mathfrak{g} . The automorphism σ of G cyclically permutes the p blocks of a matrix; that is, σ replaces the first block by the second, the second block by the third, etc., and the p^{th} block by the first. Having been previously defined on \mathfrak{G} , σ is used in the construction of \mathfrak{g} .

PART I

Let $M_i \subseteq GL(p+1,\kappa)$ be upper triangular matrices, for i=1,...,p; κ an algebraically closed field with char $\kappa=p>0$. Let M be the matrix in $GL(p(p+1),\kappa)$ with $M_1,...,M_p$ along the diagonal, and zeroes elsewhere:

Received February 18, 1977. Revision received October 16, 1978.

Michigan Math J. 27 (1980).