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1. INTRODUCTION

The Heisenberg group is the simplest example in the class of stratified groups.
On these groups one can define a one-parameter family of anisotropic dilations
and an homogeneous norm. Hence it is possible to extend to them many of the
standard constructions of Euclidean spaces: singular integrals, homogeneous dif-
ferential operators, Lipschitz classes etc. ([4], [10], [9]). However, except for a
few instances where the representations of the group play a peripheral role, the
noncommutative Fourier transform has not been so far a tool in this kind of
harmonic analysis. More recently an attempt to make the Fourier transform on
the Heisenberg group a usable tool in the study of the Schwartz space and of
homogeneous differential operators has been made by Geller [6].

In this framework, using the theory of singular integrals on homogeneous spaces
developed by Coifman, De Guzman and Weiss [2], we extend to the three-dimensional
Heisenberg group the classical multiplier theorem of Hormander.

We recall that Héormander’s theorem is stated in the following way [8].

n
THEOREM 1. Let M be a function of a class C*in R™\\ {0}, % = —5- + 1. Assume

that
i) M € L°(R")
ii) sup RZel-» S 0" M ()|*dE < C
Re [0, +x) R<|E|=2R

for all differential monomials 9" of order |a| < k. Then the linear operator Ty
defined by

Tyfx) = S e O M) F(e)dE

is bounded on L* (R"), 1 < p < co.

This theorem has already been extended to SU(2) by Coifman and Weiss [1]
and to the group of Euclidean motions by Rubin [11].

In the next section we review some basic tools of the harmonic analysis on
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