MAZUR MANIFOLDS

Selman Akbulut and Robion Kirby

1. INTRODUCTION

In [10] Mazur constructed a contractible 4-manifold whose boundary is a homology 3-sphere not equal to S^3 . In this paper we investigate some generalized Mazur manifolds $W^{\pm}(\ell,k)$ gotten by adding a 2-handle to $S^1 \times B^3$ in certain ways. Consider the knots K^{\pm} in $S^1 \times B^2 \subset S^1 \times S^2 = \partial (S^1 \times B^3)$ drawn below in Figure 1.

There are ℓ full twists (right-handed as drawn if $\ell > 0$, left-handed if $\ell < 0$) in K^{\pm} . The 0-framing on the normal bundle to K^{\pm} is the one derived from the normal vector field which is tangent to a Seifert surface between K^{\pm} and the curve $\gamma_{\pm} (= S^1 \times q \text{ where } S^1 \times q \cap K^{\pm} = \emptyset)$. Since $\pi_1(SO(2))$ acts on the normal bundle to K^{\pm} in the obvious way, twisting k times, k determines a trivialization of the normal disk bundle which we use to attach a 2-handle to $S^1 \times B^3$, getting $W^{\pm}(\ell,k)$. Mazur's example ([10]) was $W^-(0,3) \approx W^+(0,0)$, (see section 2 for the diffeomorphism).

We consider the question: is γ_{\pm} homotopically slice? That is, does γ_{\pm} bound a *smoothly* imbedded disk in some contractible 4-manifold X^4 with $\partial X^4 = \partial W^{\pm}(\ell, k)$?

THEOREM 1. γ_{-} is homotopically slice if and only if

$$(2, k) = (0, 0), (4, 1) \text{ or } (2, k).$$

THEOREM 1'. γ_+ is homotopically slice if and only if

$$(\ell, k) = (2, 1), (-2, 0) \text{ or } (0, k).$$

Theorem 1' follows from Theorem 1 because there is a diffeomorphism between $\partial W^-(\ell,k)$ and $\partial W^+(-\ell+2,-k+1)$ which takes γ_- to γ_+ (see Proposition 1, section 2).

Zeeman [13, page 357] suggested that no essential knot in the boundary of a contractible manifold is slice. Somewhat the opposite has turned out to be true (see [9] for some examples), for R. Fenn [3] showed that any circle in the boundary of a contractible manifold with a 2-dimensional spine is homotopic to one which is slice. However, some special cases are still interesting. It has been known for some time that γ_+ is slice in $W^+(0,k)$, for all k (the slice is drawn in section 5). However the same method cannot work for γ_- in $W^-(0,0)$ (see [9]). Considerable effort has not produced a slice. But as is known (section 5), γ_- is slice in some other contractible manifold W. W is h-cobordant to $W^-(0,0)$ (any contractible

Received November 24, 1976. Revision received March 21, 1978.

Michigan Math. J. 26 (1979).