## PSEUDOCONVEXITY AND VALUE DISTRIBUTION FOR SCHUBERT ZEROES

## Chia-Chi Tung

The distribution of zeroes of holomorphic sections in a Hermitian vector bundle was first studied using characteristic forms by Bott and Chern [2], and later by Cowen [5], Griffiths-King [8] and Stoll [15] [17]. In the general setting, let  $f: X \to Y$  be a holomorphic map (where X, Y are complex spaces); assume in Y a reasonable set of subvarieties,  $\mathfrak{A} = \{S_b\}_{b \in \mathbb{N}}$ , is given. One wishes to describe the typical behavior of the fiber  $S_{b,f} = f^{-1}(S_b)$ ,  $b \in \mathbb{N}$ . Assume X carries a pseudoconvex (respectively, pseudoconcave) exhaustion function; i.e., a proper, C<sup>∞</sup> map  $\varphi: X \to \mathbb{R}$  whose Levi form  $L(\varphi) = dd^c \varphi \ge 0$  (respectively,  $L(\varphi) \le 0$ ) off a compact set. If  $\{S_{b,f}\}$  is zero dimensional, suitable growth conditions or geometric properties of f imply that  $S_{b,f} \neq \emptyset$  for almost all  $S_b \in \mathcal{U}$  (e.g. [3] [5] [6] [7] [14] [20]). If  $\{S_{b,f}\}$  has positive dimension, in order to prove the same an additional closed, nonnegative form measuring the volume of S<sub>b,f</sub> was usually required ([9] [14] [17] [19]). In place of the latter hypothesis, one may assume there is a closed form  $\theta \in A_2^{1,1}(X)$  such that outside a compact set,  $\theta \ge 0$ ,  $\theta \ge L(\varphi)$  and  $\theta^m \ne 0$  $(m = \dim X)$ . In terms of this  $\theta$  the Casorati-Weierstrass type theorems can be established even in the case  $L(\varphi)$  has eigenvalues of different signs. It is unknown, however, if such a  $\theta$  exists for a given  $\varphi$ . If  $\varphi$  is strongly logarithmic pseudoconvex (in the sense of Griffiths-King-Stoll [8] [15]), the natural choice of  $\theta$  is of course  $L(\varphi)$ . In this case, (under certain conditions) one can prove the equidistribution property: the valence of a generic S<sub>b</sub> grows to infinity over suitable sequences of open sets at the same rate as the characteristic of f ([19,4.9]). Taking into account also the 0-convex exhaustion function of Andreotti-Grauert [1], a unified notion of pseudoconvexity which admits equidistribution seems to be of interest. To this end, the g-pseudoconvex, (g,y)-pseudoconvex as well as the g-pseudoconcave exhaustion functions are introduced in Section 1.

The equidistribution theorems are first proved for an admissible family  $\mathfrak U$  in Y (Section 2). These can be applied to the case of Schubert zeroes of sections in a semi-ample vector bundle over Y (Section 3). The results obtained generalize those of Chern [3, p. 537] [4, 4.8], Cowen [5,7.1], Stoll [15,13.3,13.4] [17,4.6] and Wu [20, pp. 86-88].

## 1. EXHAUSTION FUNCTION AND G-PSEUDOCONVEXITY

For the basic notations the reader is referred to [19]. All complex spaces are assumed reduced, pure dimensional and countable at infinity. Let X be a complex space of dimension m > 0. Let  $\varphi: X \to \overline{\mathbb{R}}$   $[-\infty,\infty)$  be an exhaustion function; *i.e.*,

Received May 15, 1978. Revision received August 1, 1978. Partially supported by NSF Grant MCS 76-08478.

Michigan Math. J. 26 (1979).