ON THE SINGULARITY SET OF COMPLEX FUNCTIONS SATISFYING THE CAUCHY-RIEMANN EQUATIONS

M. J. Pelling

1. INTRODUCTION

Let f(z) = u(x,y) + iv(x,y) be a finite valued complex function defined on a domain D and satisfying the Cauchy-Riemann equations everywhere in D; i.e. at every point u and v possess finite first order partials satisfying $u_x = v_y$, $u_y = -v_x$. Under the additional restriction that f be continuous, or even only locally bounded, it is known that f must be analytic in D: theorems of Looman-Menchoff [3], [5] and Tolstov [4] respectively. With no supplementary restriction f need not be analytic everywhere in D (consider e.g. $f(z) = e^{-1/z^4}$), but Trokhimchuk ([5, p. 109f]) proved that the singularity set B is a closed totally disconnected set whose projections on the coordinate axes are closed nowhere dense linear sets (a result whose proof required Tolstov's theorem) and asked whether it was possible for B to contain a (perfect) nucleus. It will be shown here that (section 2) B can be non-denumerable and even of positive Lebesgue measure with f satisfying certain additional imposed conditions. Some further questions are raised in section 3.

2. LARGE SINGULARITY SETS

Definition. A complex function f(z) = u + iv has a directional derivative f'(a;z) in the direction $a = e^{i\theta}$ at z if $\lim_{h\to 0^+} (f(z+ah)-f(z))/ah$ exists finitely and equals f'(a;z). In particular if $f'(\pm 1;z)$, $f'(\pm i;z)$ all exist and are equal then f is said to satisfy CR at z which is equivalent to u,v having first order partials at z obeying the Cauchy-Riemann equations.

LEMMA 1. Let $\{a_1, a_2, ...\}$ be a countable set of directions, $|a_i| = 1$, and let D be the unit disc $|z| \leq 1$. Then there exists a countable isolated subset $A = \{b_1, b_2, ...\}$ of D and disjoint open discs N_i centred on b_i , $i \geq 1$, such that if p_i is the orthogonal projection on the tangent L_i to D at a_i then for each $i \geq 1$ the sets $p_i \bar{N}_j \subseteq L_i$ are disjoint for $j \geq i$. Furthermore A can be chosen so that $K = \bar{A} \setminus A$ (which is closed as A is isolated) has planar measure mK > 0 and $p_i K \cap p_i \bar{N}_j = \emptyset$ for $1 \leq i \leq j$.

Proof. Take a closed nowhere dense linear subset K_i of the line segment $p_i D \cap L_i$ such that $m(D \cap p_i^{-1} K_i) > \pi - 2^{-i}$ and let $K = \bigcap_{i=1}^{\infty} p_i^{-1} K_i \cap D$ so that

Received February 20, 1978.

Michigan Math. J. 26 (1979).