TURAN’S SECOND THEOREM ON SUMS OF POWERS
OF COMPLEX NUMBERS

T. W. Cusick and G. Kolesnik

Letz,,...,2,,b,,...,b, be complex numberssuchthat1 = |z, | = |2,| = ... = |2, |
and define S, = b,2% + ... + b 2%. P. Turan [3] considered the problem of finding
a lower bound for
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where the min is taken over all possible values of z,,...,z, subject to the above
constraints. He proved in [3] that
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and applied this result to various problems, including the question of the distribution
of the zeros of {(s) in the critical strip.

Later V. T. Sos and P. Turan [2] improved the estimate by showing that
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holds with A = 2¢'**/*, It was pointed out by Uchiyama [4] that the method

of [2] will actually give (1) with the better constant A = 8e. In fact, it is not
hard to see that using the same method one can get
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here the factor (m/(m + n))™ always exceeds e " but tends to e™" as m — oo.

In this paper we give a further improvement of the constant A in (1); our
resultis A < 7.81e. At the cost of some complications, our method could undoubtedly
be modified to give a slightly smaller constant.

The problem of finding a lower bound for the best possible constant A in (1)
has been considered. The best known result is A = 4e, due to Makai [1].

We need the following lemma in our proofs.

LEMMA. Letm be a positive integer and let z,, ...,z,, be any complex numbers.
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