THE PICK INTERPOLATION THEOREM FOR FINITELY CONNECTED DOMAINS

M. B. Abrahamse

Let D be the open unit disk, let $z_1,...,z_n$ be distinct points in D, and let $w_1,...,w_n$ be complex numbers. A theorem of Pick asserts that there is an analytic function φ on D satisfying $|\varphi(z)| \le 1$ for z in D and $\varphi(z_i) = w_i$ for i = 1,...,n if and only if the matrix

$$\left[\frac{1-w_i\bar{w}_j}{1-z_i\bar{z}_j}\right]$$

is nonnegative (positive semidefinite); moreover, the interpolating function ϕ is unique if and only if the determinant of this matrix is zero [16]. The purpose of this paper is to generalize this theorem with D replaced by a finitely connected domain in the plane.

To state the general result, let R be a bounded domain in the plane whose boundary consists of p+1 disjoint analytic Jordan curves, let ∂R denote the boundary of R, let ρ be a nonnegative Borel measurable function on ∂R which is bounded and bounded away from zero, let μ be the measure $d\mu(z) = \rho(z) d|z|$, and let $\Lambda = \{(\alpha_1, ..., \alpha_p): |\alpha_k| = 1 \text{ for } k = 1, ..., p\}$ be the p-torus. For α in Λ , there is a Hardy space $H^2_{\alpha}(R)$ of multiple-valued analytic functions on R which are modulus automorphic of index α . These spaces arise in questions on factorization [25], invariant subspaces [18], [23], [24], subnormal operators [2], and extremal polynomials [26]. The space $H^2_{\alpha}(R)$ can be viewed as a closed subspace of $L^2(\mu)$ and, using the norm in $L^2(\mu)$, the space $H^2_{\alpha}(R)$ is a functional Hilbert Space over R. Thus, there is a kernel function $k^{\alpha}(s,t)$ on $R \times R$ such that for f in $H^2_{\alpha}(R)$ f $(t) = \langle f, k^{\alpha}_{t} \rangle$ where $k^{\alpha}_{t}(s) = k^{\alpha}(s,t)$.

THEOREM. Let $z_1,...,z_n$ be distinct points in R and let $w_1,...,w_n$ be complex numbers. There is an analytic function φ on R satisfying $|\varphi(z)| \leq 1$ for z in R and $\varphi(z_i) = w_i$ for i=1,...,n if and only if the matrix

$$[(1 - w_i \bar{w}_i) k^{\alpha} (z_i, z_i)]$$

is nonnegative for each α in Λ . The interpolating function φ is unique if and only if the determinant of this matrix is zero for some α .

Note that if R is the unit disk and if $\rho \equiv 1$, then Λ consists of one point and the one kernel function involved is the Szegö kernel $k(s,t) = (2\pi)^{-1} (1 - s\bar{t})^{-1}$.

Received October 10, 1977.

This research was supported in part by National Science Foundation Grant GP-MPS-75-04594.

Michigan Math. J. 26 (1979).