EQUIVARIANT MAPS WITH NONZERO HOPF INVARIANT

Theodore Chang

In this paper we will derive strong necessary conditions for the existence of a torus equivariant map $f: S^{4d-1} \to S^{2d}$ with nonzero Hopf invariant. These conditions are expressed in terms of the topological weight system, as defined by Wu-yi Hsiang [6], of the torus actions on S^{4d-1} and S^{2d} . They imply, for example:

COROLLARY. Suppose a torus T acts almost effectively (that is, with discrete ineffective kernel) on either S^{4d-1} or S^{2d} . If an equivariant map $f: S^{4d-1} \to S^{2d}$ exists with nonzero Hopf invariant, then either:

(i) $F(T, S^{4d-1}) \sim S^{4r-1}$ and $F(T, S^{2d}) \sim S^{2r}$, $0 \le r \le d$, and, except when r = 0 and d = 1, 2, rank $T \le d - r$,

or (ii)
$$F(T, S^{4d-1}) = \emptyset$$
 and $F(T, S^{2d}) \sim S^{2r}$ or $F(T, S^{4d-1}) \sim S^{2r-1}$ and $F(T, S^{2d}) \sim S^0$, $0 < r \le d$, and rank $T \le 3$ if $r = 1, 2$, rank $T \le 2$ if $r \ge 3$.

Here F(T,X) denotes the fixed point set of T acting on X and $X \sim Y$ means $H^*(X;Q) = H^*(Y;Q)$. All cohomology will be with rational coefficients.

1. When $f: S^{4d-1} \to S^{2d}$ has nonzero Hopf invariant, its mapping cone M(f) will be a rational cohomology projective plane whose cohomology is generated by an element of degree 2d; such a space will be called a $P^2(2d)$. When f is equivariant with respect to a torus T acting on S^{4d-1} and S^{2d} , M(f) will inherit a T action. The cohomology structure of the possible fixed point sets of the T action on M(f) are well known (see, for example, [2, p. 393]) and it follows:

PROPOSITION 1. If T acts on S^{4d-1} and on S^{2d} and if $f: S^{4d-1} \to S^{2d}$ is equivariant with nonzero Hopf invariant, then either

(i)
$$F(T,S^{4d-1}) \sim S^{2r-1}$$
 and $F(T,S^{2d}) \sim S^{2r}$, $0 \le r \le d$, or (ii) $F(T,S^{4d-1}) = \emptyset$ and $F(T,S^{2d}) \sim S^{2r}$ or $F(T,S^{4d-1}) \sim S^{2r-1}$ and $F(T,S^{2d}) \sim S^0$, $0 < r \le d$.

When case (i) of Proposition 1 occurs we will say the T actions are of type (i); otherwise the T actions are of type (ii). Case (i) occurs when $F(T,M(f)) \sim P^2(2r)$ and case (ii) occurs when $F(T,M(f)) \sim \text{pt} + S^{2r}$; these are the only two possibilities.

If T acts on a sphere S^n with $F(T,S^n) \sim S^r$ $(r=-1 \text{ when } F(T,S^n)=\emptyset)$ a (topological) weight is a corank 1 subtorus H so that $F(H,S^n) \sim S^q$ with q > r. Its multiplicity is (q-r)/2 which is always integer. The Borel formula states that the sum of the multiplicities of the weights is exactly (n-r)/2; in particular the collection of weights is finite. A local weight H can be identified with an element $\omega \in H^2(B_T)$ which is defined up to multiplication by a nonzero rational constant. We simply choose ω to be any generator of the kernel of the restriction

Received January 31, 1977.

The author was partially supported by a State of Kansas General Research Grant.

Michigan Math. J. 26 (1979).