SIMPLY CONNECTED SURGERY OVER A RING

Gerald A. Anderson

1. INTRODUCTION

In [1] it is shown that the surgery obstructions for a simply connected problem are given by the signature, Kervaire invariant or invariants β_p lying in a certain 2-torsion group determined in [2]. The first two listed have been treated extensively in the literature. It is the purpose of this paper to compute the β_p -invariants of a normal map $f: M \to X$ in terms of M,X and the degree of f (section 3). We also deduce a product formula. Applications are given to Poincare complexes, homology spheres, singular manifolds and involutions.

2. SURGERY OBSTRUCTION GROUPS

Let R be a principal ideal domain. A map $f: X \to Y$ between path-connected, simply connected spaces is an R-homotopy equivalence if

$$f_{\#} \otimes 1$$
: $\pi_{i}(X) \otimes R \cong \pi_{i}(Y) \otimes R$ for all i.

Suppose $\pi_1 X = 0$ and $(X, \partial X)$ satisfies Poincare duality with coefficients in R, given by cap product with $[X, \partial X] \in H_n(X, \partial X)$. Let $f: (M, \partial M) \to (X, \partial X)$ be a map so that

- (i) $(M, \partial M)$ is a compact n-manifold,
- (ii) $f_*[M,\partial M]$ is a unit in $H_n(X,\partial X;R) \cong R$,
- (iii) there is a bundle ξ over X and a bundle map b: $\nu_M \rightarrow \xi$ covering f, and
- (iv) $f \mid \partial M$ is an R-homotopy equivalence.

In [1] we construct a cobordism group $L_n(1;R)$ so that if $n \geq 5$, f is normally cobordant to an R-homotopy equivalence if and only if an obstruction in $L_n(1;R)$ vanishes. Let K be the set of primes p so that $R \otimes \mathbb{Z}/p = 0$; then $L_n(1;R) \cong L_n(\mathbb{Z}_K)$ where $\mathbb{Z}_K = \mathbb{Z}[1/p: p \in K]$, and $L_n(\mathbb{Z}_K)$ is K-theoretic group of [10]. The following is proved in [1]:

THEOREM 2.1. (i)
$$L_{2n+1}(\mathbb{Z}_K) = 0$$
 (ii) $L_{4n+2}(\mathbb{Z}_K) \cong \mathbb{Z}/2 \otimes \mathbb{Z}_K$

(iii)
$$L_{4n}(\mathbb{Z}_K) \cong W(\mathbb{Z}_K)$$
.

Received October 6, 1976. Revision received July 1, 1978. Partially supported by an NSF grant.

Michigan Math. J. 26 (1979).