AN L_D ANALYTIC FOURIER-FEYNMAN TRANSFORM

G. W. Johnson and D. L. Skoug

0. INTRODUCTION

In [1] Brue introduced an L_1 analytic Fourier-Feynman transform. In [3] Cameron and Storvick introduced an L_2 analytic Fourier-Feynman transform. In this paper we study an L_p analytic Fourier-Feynman transform for $1 \le p \le 2$. The resulting theorems extend the theory substantially (even in the cases p=1 and p=2) and indicate relationships between the L_1 and L_2 theories.

Before giving the basic definitions we fix some notation. \mathbb{R}^n will denote n-dimensional Euclidean space, \mathbb{C} the complex numbers and \mathbb{C}^+ the complex numbers with positive real part. $C_o(\mathbb{R}^n)$ will denote the \mathbb{C} -valued continuous functions on \mathbb{R}^n which vanish at ∞ . Wiener space, C [a,b], will denote the \mathbb{R} -valued continuous functions on [a,b] that vanish at a. Integration over C [a,b] will always be with respect to Wiener measure. If Y and Z are Banach spaces, L(Y,Z) will denote the space of continuous linear operators from Y to Z.

In this paper, as in [3], the term *Wiener measurable* will always mean measurable with respect to the uncompleted Wiener measure; that is measurable with respect to the σ -algebra of Borel sets in C [a, b].

Definition. Let F be a functional such that the Wiener integral

$$J(\lambda) = \int_{C[a,b]} F(\lambda^{-1/2} x) dx$$

exists for almost all real $\lambda > 0$. If there exists a function $J^*(\lambda)$ analytic in the half-plane \mathbb{C}^+ such that $J(\lambda) = J^*(\lambda)$ for almost all real $\lambda > 0$, then we define this essential analytic extension of J to be the analytic Wiener integral of F over C[a,b] with parameter λ and we write

Notation. For $\lambda \in \mathbb{C}^+$ and $y \in \mathbb{C}$ [a, b] let

$$(0.3) \qquad \qquad (T_{\lambda}F)(y) \equiv \int_{C \, [a,b]}^{anw_{\lambda}} F \, (x \, + \, y) \, dx.$$

Terminology. We shall say that two functionals F and G are equal s-almost

Michigan Math. J. 26 (1979).

Received November 18, 1976. Revision received February 1, 1977.