THE BEZOUT PROBLEM FOR A SPECIAL CLASS OF FUNCTIONS

Robert E. Molzon

INTRODUCTION

For a holomorphic mapping $f: \mathbb{C}^2 \to \mathbb{C} P^2$ Cornalba and Shiffman [1] have shown that it is, in general, impossible to estimate the growth of $f^{-1}(W)$ in terms of the growth of f. Here $W \in \mathbb{C} P^2$ and $f^{-1}(W)$ is assumed discrete. The growth of $f^{-1}(W)$ is measured by counting the number of points in $f^{-1}(W) \cap \{|z| \le r\}$. In this paper we give a class of functions E for which it is possible to measure the growth of $f^{-1}(W)$ in terms of the growth of f and another function M(r). It is hoped that M(r) will be easier to estimate than the error term S(r) of Griffiths [2].

1. NOTATION

Let $\omega = dd^c \log \|Z\|^2$ be the standard Kähler metric on \mathbb{CP}^2 . Let $\tau = \log |z|^2$ be the exhaustion function on \mathbb{C}^2 . If $\xi \in \mathbb{CP}^1$ let \mathbb{C}_{ξ} be the corresponding line through the origin in \mathbb{C}^2 . If $f: \mathbb{C}^2 \to \mathbb{CP}^2$ let $f_{\xi} = f | \mathbb{C}_{\xi}$. Let $W \in \mathbb{CP}^2$. Then $W = A \cap B$ (= intersection of perpendicular lines in \mathbb{CP}^2). Let

$$\omega_{o} = dd^{c} \log (|\langle Z, A \rangle|^{2} + |\langle Z, B \rangle|^{2})$$

in \mathbb{CP}^2 . Let $\Lambda_W = \log \left[|Z|^2/(|\langle Z,A\rangle|^2 + |\langle Z,B\rangle|^2) \right] (\omega + \omega_o)$. If $f:\mathbb{C}^2 \to \mathbb{CP}^2$ is holomorphic and $f^{-1}(W)$ discrete then we have the following functions from Nevanlinna theory:

$$n(W,r) = card(\{|z| \le r\} \cap f^{-1}(W))$$

 $N(W,r) = \int_{0}^{r} n(W,t) d \log t$

(Here we assume $f(0) \neq W$, otherwise one must modify the counting function N(W,r).)

$$T_{1}(\mathbf{r}) = \int_{0}^{\mathbf{r}} \left\{ \int_{|z| \le t} f^{*} \omega \wedge dd^{c} \tau \right\} d\log t$$

$$T_{2}(\mathbf{r}) = \int_{0}^{\mathbf{r}} \left\{ \int_{|z| \le t} f^{*} \omega \wedge f^{*} \omega \right\} d\log t$$

$$S(W,\mathbf{r}) = \int_{|z| \le \mathbf{r}} f^{*} \Lambda_{W} \wedge dd^{c} \tau.$$

Received November 22, 1977. Revision received March 9, 1978

Michigan Math. J. 26 (1979).