A STRONGER INVARIANT FOR HOMOLOGY THEORY

Richard Jerrard-

1. INTRODUCTION

In this paper we show that in any homology theory which satisfies the
Eilenberg-Steenrod axioms, the homology groups for compact polyhedral pairs satisfy
aninvariance much stronger than homotopy type invariance; it is called m-homotopy
type invariance. The simplest example is the torus T® and the wedge of spheres
S? v 8' v S', which do not have the same homotopy type but do have the same
m-homotopy type; therefore, they must have the same homology groups. This is
a special case of Theorem 3.8, which begins to classify spaces by m-homotopy
type.

The proof uses certain multiple valued functions which we have called m-func-
tions. An m-function is finite valued, and each point of its graph is assigned
a multiplicity which is an element of a fixed ring. The multiplicities satisfy an
additivity condition which insures that locally as well as globally, the multiplicity
is conserved with respect to variations in the domain variable.

M-functions were used in {5] to describe the intersections of two smooth simple
closed curves in general position in the plane. As one curve undergoes a homotopy,
intersections appear and disappear; one gets a weighted multiple valued function
which associates with each homotopy parameter value a finite number of intersec-
tions, each labeled +1, —1 or zero depending on the orientation of the intersection.

This situation occurs again in studying fixed points, for one is looking for
intersections of the graph of a function f: X — X with the diagonal of the space
X X X. Given a homotopy f,: X — X one obtains an m-function g: I - X in which
the points of g(t) are the fixed points of f, and their multiplicities are the degrees
of the fixed points.

One can construct m-functions that are fundamentally different from any
continuous function. For example, as part of the m-homotopy equivalence mentioned
above we have an m-function from S® to T? that can be described as follows.
If one puts a two-sphere in the (hollow) interior of a torus, there is a projection
from T? onto S®. The inverse of this projection is an m-function; a graph point
has multiplicity +1, —1, or zero depending on how the radial ray from the sphere
center intersects the torus at the point. Unlike any continuous function S® — T?
this m-function has degree one and is not null-homotopic. Another difference is
that m-functions do not behave well under products; diagrams involving products
may not commute, and there is no cup product in m-homology.

It is not difficult to do homology with m-functions [1]. The m-homology theory,
together with some applications to fixed points of continuous functions, is also
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