MATRIX ALGEBRAS OVER O_n

William L. Paschke and Norberto Salinas

This paper is concerned with the extension theory of the C*-algebras O_n studied by J. Cuntz in [7] and their tensor products with the algebra M_k of complex $k \times k$ matrices. We show by computing various Ext groups that the O_n 's are pairwise non-isomorphic (a result which has also been obtained independently by M. Pimsner and S. Popa [8]), and that O_n and $O_n \otimes M_k$ are non-isomorphic if k and n-1 are not relatively prime. We also prove that O_n is isomorphic to $O_n \otimes M_k$ if k divides n or is congruent to 1 mod (n-1).

We briefly indicate our notation and summarize essential prerequisites from extension theory for C*-algebras. Throughout, H is complex, infinite-dimensional separable Hilbert space. We write L(H) and Q(H) for, respectively, the algebra of all bounded operators on H and the Calkin algebra (the quotient of L(H) by the compacts), and let $\pi: L(H) \to Q(H)$ denote the quotient map. To avoid unnecessary clumsiness of expression, we once and for all make fixed identifications of $H \otimes \mathbb{C}^n$ (the direct sum of n copies of H) with H for n = 2, 3, ..., and thereby identify $L(H \otimes \mathbb{C}^n)$ with L(H) and $Q(H \otimes \mathbb{C}^n)$ with Q(H). We also identify $L(H \otimes \mathbb{C}^n)$ and $Q(H \otimes C^n)$ with $L(H) \otimes M_n$ and $Q(H) \otimes M_n$, respectively, in the natural way. For a separable unital C*-algebra A, we write E(A) for the set of all unital *-monomorphisms (extensions) of A into Q(H). We say that extensions τ and σ are strongly (respectively, weakly) equivalent if there is a unitary $U \in L(H)$ (respectively, unitary $u \in Q(H)$) such that $\tau(\cdot) = \pi(U) \sigma(\cdot) \pi(U^*)$ (resp. $u\sigma(\cdot) u^*$). For $\tau \in E(A)$, $[\tau]$ denotes the strong equivalence class of τ . We write $\operatorname{Ext}^s(A)$ for $\{\tau: \tau \in \operatorname{E}(A)\}$ and let Ext $^{w}(A)$ denote the set of weak equivalence classes in E(A). Given τ , $\sigma \in E(A)$, we define $\tau \oplus \sigma \in E(A)$ (via our identification of Q(H) with Q(H) \otimes M₂) by

$$(\tau \oplus \sigma)(a) = \begin{pmatrix} \tau(a) & 0 \\ 0 & \sigma(a) \end{pmatrix}.$$

The operations thereby induced on $\operatorname{Ext}^s(A)$ and $\operatorname{Ext}^w(A)$ make them into abelian semigroups. An extension τ is called *trivial* if it lifts to a unital *-representation of A on H. D. Voiculescu showed in [12] (see also [2]) that all trivial extensions of A are strongly equivalent and that the resulting strong equivalence class serves as the zero element of $\operatorname{Ext}^s(A)$. Correspondingly, the weak equivalence class of any trivial extension is the zero element of $\operatorname{Ext}^w(A)$. It is not the case in general that $\operatorname{Ext}^s(A)$ (and hence $\operatorname{Ext}^w(A)$) is a group; see [1] for an example of a non-invertible extension. When $\operatorname{Ext}^s(A)$ is a group, though, $\operatorname{Ext}^w(A)$ can be naturally identified with the quotient of $\operatorname{Ext}^s(A)$ by the subgroup consisting of those $[\tau]$ for which τ is weakly equivalent to a trivial extension.

Received December 30, 1977.

Both authors partially supported by NSF grant MCS 77-01850.

Michigan Math. J. 26 (1979).