DISCRETE MAPS ON MANIFOLDS

P. T. Church

1. INTRODUCTION

Let M^n and N^n be second countable manifolds, and let $f: M^n \to N^n$ be a map (continuous function). The *branch set* $B_f \subset M^n$ is the set of points at which f fails to be a local homeomorphism; and f is *countable* (respectively, *discrete*) if $f^{-1}(y)$ is countable (respectively, consists of isolated points) for each $y \in N^n$.

- 1. THEOREM. If f is countable, then int $B_f = \emptyset$, i.e. dim $B_f \le n 1$.
- 2. THEOREM. If f is discrete, then dim $B_f = \dim f(B_f) \le n 1$. Specifically, f is open if and only if dim $B_f = \dim f(B_f) \le n 2$.

In [13] Väisälä proved Theorem 1 for $n \le 3$, and conjectured it for general n. The present proof for arbitrary n is shorter than Väisälä's proof, but builds on his earlier lemmas, and his clever ideas. The second sentence of Theorem 2 is already known (see (12)). Examples ((9) and (10)) show that the Theorems are sharp, and a mistake in a paper of Trohimčuk [11] is discussed. The author is grateful to the Institute for Advanced Study for its hospitality during the summer of 1977.

3. Notation and terminology. A map $f: M^n \to N^n$ is light if

$$\dim f^{-1}(y) \le 0$$
 for every $y \in N^n$.

Alexander-Spanier cohomology with integer coefficients and compact supports is used, and \tilde{H}^m is augmented. The real numbers are denoted by \mathbb{R} , $[0, 1] \subset \mathbb{R}$ by I, the unit sphere in \mathbb{R}^{n+1} by S^n , and the distance between x and y by d(x, y). A subset $A \subset B$ is residual if B - A is of the first category in $B \neq \emptyset$ [8].

2. THE PROOF OF THEOREM 1

4. LEMMA. Let $K \neq \emptyset$ be compact and let $B \subset I^m$ be residual (m = 0, 1, ...). If $f : K \to I^m$ is a light map with $f \mid f^{-1}(B)$ injective, then $\tilde{H}^m(K) = 0$.

Proof. We use induction on m. For m = 0, I^0 is a single point, so $B = I^0$ and (since $f | f^{-1}(B)$ is injective), K is also a single point.

Suppose the lemma is true for m-1, and consider $m \ge 1$. According to the Kuratowski-Ulam Theorem [8; Vol. I, p. 247, Corollary 1a] there is a residual set $C \subset I$ such that $B \cap (\{x\} \times I^{m-1})$ is residual in $\{x\} \times I^{m-1}$ for each $x \in C$.

Received August 5, 1977. Revision received October 6, 1977.

Michigan Math. J. 25 (1978).