NORMAL DIRECT SUMMANDS OF HYPOREDUCTIVE OPERATORS

R. L. Moore

In [2], C. K. Fong showed that if S is a hyporeductive operator, N is normal, and if S is quasi-similar to N, then S is normal. In this paper we obtain an extension of Fong's result; in particular, we show that if there are any non-zero operators X and Y such that SX = XN and YS = NY, then S has a normal direct summand.

In what follows \mathscr{H} will be a separable complex Hilbert space, N will be a fixed normal operator in $\mathscr{B}(\mathscr{H})$, and S will be a fixed *hyporeductive* operator in $\mathscr{B}(\mathscr{H})$; that is, S has the property that every hyperinvariant subspace reduces S.

If A and B are any two operators we will use the following notation:

$$\mathcal{L}(A,B) = \{Y: YA = BY\}$$

 $\mathcal{R}(A,B) = \{X: AX = XB\}.$

(The letters $\mathscr L$ and $\mathscr R$ are chosen to reflect the position of Y or X with respect to A; in the defining equation Y appears on the left, X on the right of A.) For convenience we will refer to $\mathscr L(S,N)$ and $\mathscr R(S,N)$ as simply $\mathscr L$ and $\mathscr R$. $\mathscr L$ and $\mathscr R$ are not empty since the zero operator is in each. In addition, let $K_\mathscr L$ be the projection whose range is $\left[\bigcap_{i=1}^{n} \{\ker Y\colon Y\in\mathscr L\}\right]^{\perp}$ and let $R_\mathscr R$ be the projection

whose range is \bigvee {ranX: X $\in \mathcal{R}$ }. Evidently, ker Y \supseteq ker K_{\mathscr{L}} and ran X \subseteq ran R_{\mathscr{R}} for each Y in \mathscr{L} and X in \mathscr{R} .

THEOREM 1. With the above notation, if $K_{\mathscr{L}}$ and $R_{\mathscr{R}}$ are both equal to the identity, then S is normal.

Notice that Fong's result is a special case of Theorem 1, since if there exist quasiaffinities Y and X in $\mathscr L$ and $\mathscr R$ respectively, then $K_{\mathscr L}=R_{\mathscr R}=1$ trivially. The proof below is based on the proof in [2].

Proof. First observe that if Y and X are in $\mathscr L$ and $\mathscr R$ respectively, and if C commutes with S and D commutes with N, then DY and YC are in $\mathscr L$ and XD and CX are in $\mathscr R$.

Suppose that *M* is a hyperinvariant subspace of the normal operator N. Denote

Received January 6, 1978. Revision received May 20, 1978.

Michigan Math. J. 25 (1978).