q-PLURISUBHARMONIC FUNCTIONS AND A GENERALIZED DIRICHLET PROBLEM

L. R. Hunt and John J. Murray

1. INTRODUCTION

Let Ω be a bounded domain in \mathbb{C}^n and let q be an integer, $0 \le q \le n-1$. A C^2 function Ω defined in Ω is a q-plurisubharmonic function in Ω if its complex Hessian has (n-q) nonnegative eigenvalues at each point of Ω . An obvious question is whether there is a definition for q-plurisubharmonic functions which are not necessarily C^2 . Recall that an upper semicontinuous function defined in Ω is plurisubharmonic there if it is essentially subharmonic in every complex direction (see [6]). Thus the definition of plurisubharmonic function is reduced to a 1-complex dimensional definition, and the same is true for plurisuperharmonic functions. We give definitions of q-plurisubharmonic (and q-plurisuperharmonic) functions in Ω , with 0-plurisubharmonic and plurisubharmonic being equivalent. These definitions seem to be very natural for \mathbb{C}^n , are invariant under biholomorphic coordinate changes on \mathbb{C}^n , and are equivalent to those mentioned above if a function is actually \mathbb{C}^2 .

Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^n , n > 1, with C^2 boundary, and suppose that b is a continuous real valued function defined on ∂D . We can solve the Dirichlet problem to find a harmonic function in D which assumes the given boundary values. The problem with this solution is that it is not invariant under biholomorphic coordinate changes on \mathbb{C}^n . In order to remedy this, Bremermann [3] considered the class of all continuous plurisubharmonic functions in D which are less than or equal to b on ∂D and applied Perron's method showing that the upper envelope $\bar{\mathbf{u}}$ of this class exists and takes on the given boundary values. His solution $\bar{\mathbf{u}}$ is plurisubharmonic in D, invariant under biholomorphic coordinate changes on \mathbb{C}^n , and if \mathbb{C}^2 , satisfies the homogeneous complex Monge-Ampere equation

$$[\partial \bar{\partial} \mathbf{u}]^{n} = \underbrace{\partial \bar{\partial} \mathbf{u} \wedge \dots \wedge \partial \bar{\partial} \mathbf{u}}_{n \text{ times}} = 0$$

in D. Later, Walsh [8] showed that \bar{u} is continuous, and Bedford and Taylor [2] proved that \bar{u} satisfied their distributional definition of the homogeneous complex Monge-Ampere equation.

Let D be a strictly q-pseudoconvex domain in \mathbb{C}^n with C^2 boundary, and let b be a continuous function on ∂D . We prove that the upper envelope of all upper semicontinuous functions on \bar{D} which are q-plurisubharmonic in D and less than

Received September 10, 1976. Revision received February 22, 1977. The first author was supported in part by NSF Grant No. MCS76-05267.

Michigan Math J. 25 (1978).