LOCAL EXTENSION OF CR FUNCTIONS FROM WEAKLY PSEUDOCONVEX BOUNDARIES

Eric Bedford and John Erik Fornæss

Let $\Omega = \{z \in \mathbb{C}^n : r(z) < 0\}$ be a domain in \mathbb{C}^n , $r \in C^2(\mathbb{C}^n)$, $dr \neq 0$ on $\partial\Omega$, and let $\bar{\partial}_b$ denote the tangential Cauchy-Riemann equations on $\partial\Omega$. A CR-function f on $\partial\Omega$ is a solution of $\bar{\partial}_b f = 0$; the exact sense in which this equation is interpreted may vary with the regularity of f and $\partial\Omega$. A basic result concerning CR-functions is the following local extension phenomenon, which holds at any strongly pseudoconvex point $p \in \partial\Omega$:

for each neighborhood $U' \subset \mathbb{C}^n$ of p, there exists a neighborhood U'' of p such that each CR-function f on $\partial\Omega \cap U'$ has a holomorphic extension to $\Omega \cap U''$

(see the references in the survey article by Henkin and Chirka [2]). An important factor in the proof of (*) is that a strongly pseudoconvex boundary can be made (locally) strictly convex by a holomorphic change of coordinates. It is therefore immediate that (*) holds for $f \in \mathcal{O}(\partial \Omega \cap U')$. This local convexity is not true for weakly pseudoconvex domains (see Kohn and Nirenberg [3]), and the proof of (*) in this case is more delicate. Hill and MacKichan [1] have shown that (*) holds for the Kohn-Nirenberg example; they construct a family of disks rather differently from the way it is done below.

THEOREM. Let Ω be a domain in \mathbb{C}^n which is real analytic and (weakly) pseudoconvex in a neighborhood of $p \in \partial \Omega$. Then (*) holds at p if and only if there is no germ of a complex variety V of codimension one with $p \in V \subset \partial \Omega$.

Proof. Let us first show that if (*) holds there can exist no germ of a complex hypersurface $V \subset \partial \Omega$. The condition that V has codimension one means that its normal bundle is given by $\partial r \wedge \bar{\partial} r$ and so it is a manifold. Thus there exists a function f holomorphic in a neighborhood of p such that $\{f=0\}$ defines V at p and d Re f(p) = dr(p). A suitable branch of the function $F(z) = \exp(-f(z)^{-1/2})$ will define a C^{∞} , CR-function on a neighborhood of p in $\partial \Omega$ which cannot be continued to $\Omega \cap U''$ for any neighborhood U'' of p.

Now we show that (*) holds if V does not exist. More precisely, we will obtain a family of disks satisfying (i) and (ii) below which can be used to construct the extension. (A modern treatment of this is given, for instance, in Polking and Wells [4].) The proof that the function f can actually be extended can be carried

Received July 5, 1977.

The work of the first author was partially supported by NSF grant MCS 76-23465 A01, and the work of the second author was partially supported by NSF grant MCS 75-09629 A02.

Michigan Math. J. 25 (1978).