ON REPRESENTATIONS OF ARTIN'S BRAID GROUP

Colin Maclachlan

In [5], it is shown that the projective symplectic group $P \operatorname{Sp}((n-2)/2, \mathbb{Z}_3)$ is an epimorphic image of B_n , Artin's Braid group on n strings. The method arises from machinery established by Hurwitz [10] for determining the action of B_n on branched coverings of the two-sphere. Redefining this action in terms of Fuchsian groups, a more direct proof of this result is obtained and the general method is shown to be allied to the methods of [8] of obtaining finite representations of the mapping class groups of related Fuchsian groups. These latter finite representations are discussed in Section 3. The link is provided in Section 2 by a general method of obtaining (infinite) symplectic representations of B_n , which is, in essence, a reformulation of results in [4].

1. PRELIMINARIES

A Fuchsian group is a discrete subgroup of $\mathscr{L}=\mathrm{PSL}\,(2,\mathbb{R})$, the group of all conformal self-homeomorphisms of the upper half-plane U. A finitely-generated Fuchsian group of the first kind has a presentation of the form:

Generators:
$$e_1, e_2, ..., e_r, p_1, ..., p_s, a_1, b_1, ..., a_g, b_g$$
(1)

Relations: $e_i^{m_i} = 1 \ (i = 1, 2, ..., r);$

$$\prod_{i=1}^r e_i \prod_{j=1}^s p_j \prod_{k=1}^g [a_j, b_j] = 1$$

A Fuchsian group with presentation (1) has signature (g; $m_1, ..., m_r$; s). The e_i are elliptic elements, the p_i parabolic and the a_i , b_i hyperbolic. The quotient space U/Γ takes the structure of a Riemann surface obtained from a compact surface of genus g by deleting s points. The covering $U \rightarrow U/\Gamma$ is branched over r points corresponding to the fixed points of e_1 , e_2 , ..., e_r and the periods m_i give the order of branching at these points.

 Γ has a fundamental region in U whose hyperbolic area μ (Γ) is given by

(2)
$$\mu (\Gamma) = 2\pi \left[2(g-1) + \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) + s \right].$$

If Γ_1 is a subgroup of Γ of finite index n, then $\mu(\Gamma_1) = n\mu(\Gamma)$, which combined with (2) gives the Riemann-Hurwitz relation.

With Γ as at (1), an automorphism of Γ is called *type-preserving* if it maps parabolic elements into parabolic elements. Let F be a free group on 2g + r + s

Received September 20, 1976. Revision received April 25, 1977.

Michigan Math. J. 25 (1978).