JORDAN C*-ALGEBRAS

J. D. Maitland Wright

INTRODUCTION

In his final lecture to the 1976 St. Andrews Colloquium of the Edinburg Mathematical Society, Professor Kaplansky introduced the concept of a Jordan C*-algebra (see below for definitions), pointed out its potential importance, and made the following conjecture. Let \mathcal{A}_1 , \mathcal{A}_2 be unital Jordan C*-algebras and let ϕ : $\mathcal{A}_1 \to \mathcal{A}_2$ be a surjective isometry with $\phi 1 = 1$; then ϕ is a Jordan *-isomorphism. In verifying this conjecture [15], extensive use was made of the deep results of Alfsen, Schultz, and Störmer [2] on JB-algebras.

It is easy to see that the self-adjoint part of a Jordan C*-algebra is a JB-algebra. The main part of this paper, Section 2, is devoted to establishing a converse result. Each JB-algebra is the self-adjoint part of a unique Jordan C*-algebra. First we establish the result for finite-dimensional algebras. This is not entirely straightforward and seems to require quite delicate arguments. Once this is accomplished; in particular, when we know of the existence of an exceptional Jordan C*-algebra, \mathcal{M}_3^8 , whose self-adjoint part is M_3^8 (the exceptional Jordan algebra discovered by von Neumann, Jordan, and Wigner [6]), then the general result can be obtained quite quickly.

In the final section we consider ideals and quotients of Jordan C*-algebras and, applying the results of Section 2 and the main theorem of [2], show that for each Jordan C*-algebra $\mathscr A$ there exists a unique *-ideal $\mathscr I$ such that (i) $\mathscr A/\mathscr I$ can be isometrically *-isomorphically embedded into the special Jordan *-algebra of bounded operators on a complex Hilbert space and (ii) each 'factorial' representation of $\mathscr A$ which does not annihilate $\mathscr I$ is onto $\mathscr M_3^8$.

I would like to draw the attention of the reader to an interesting recent paper by Bonsall [3] in which he obtains a generalization of the Vidav-Palmer Theorem to special Jordan *-algebras.

1. BASIC PROPERTIES OF JORDAN C*-ALGEBRAS

Definition (Kaplansky). Let \mathscr{A} be a complex Banach space and a complex Jordan algebra equipped with an involution *. Then \mathscr{A} is a Jordan C*-algebra if the following four conditions are satisfied.

- (i) $\|\mathbf{x} \circ \mathbf{y}\| \le \|\mathbf{x}\| \|\mathbf{y}\|$ for all \mathbf{x} and \mathbf{y} in \mathbf{A} .
- (ii) $\|\mathbf{z}\| = \|\mathbf{z}^*\|$ for all \mathbf{z} in \mathbf{A} .
- (iii) $\|\{zz*z\}\| = \|z\|^3$ for all z in \mathscr{A} .

(Here {abc} is the Jordan triple product as defined on page 36 [5].)

(iv) Each norm-closed, associative *-subalgebra of ℐ is a C*-algebra

Received November 9, 1976. Revision received April 21, 1977.

Michigan Math. J. 24 (1977).