ON VANISHING EICHLER PERIODS AND CARLESON SETS

Thomas A. Metzger

1. INTRODUCTION

Let Γ be a Fuchsian group acting on the unit disk D in the complex plane, and let q be an integer, $q \geq 2$. An analytic function f defined on D is said to be an *automorphic form* of weight q with respect to Γ if $(f \circ \gamma)\gamma'^q = f$ for all γ in Γ .

The Bers spaces $A^p_q(\Gamma)$, $1\leq p\leq ^\infty$, are defined as those Banach spaces of analytic automorphic forms of weight q such that

$$\|f\|_q^p = \int_{D/\Gamma} |f(z)|^p (1 - |z|^2)^{pq-2} dx dy < \infty, \quad 1 \le p < \infty;$$

$$\|f\|_{\infty} = \sup_{D} |f(z)|(1 - |z|^2)^q < \infty, \quad p = \infty.$$

Any analytic automorphic form f of weight q can be integrated (2q - 1) times to get an analytic function $h = I^{2q-1}f$ which satisfies

$$(h \circ \gamma) \gamma^{-1-q} = h + c(\gamma, f)$$
 for all γ in Γ .

This $c(\gamma, f)$ is a polynomial of degree $s \le 2q$ - 2 and is called the *Eichler period* of f along γ . Bers [2] proved

THEOREM A. If Γ is a group of the first kind, and the Eichler period of ϕ in $A_q^{\infty}(\Gamma)$ vanishes for all γ in Γ , then $\phi \equiv 0$.

We shall extend this to say that if there exists a ϕ in $A_q^p(\Gamma)$ with vanishing Eichler period for all γ in Γ , then either $\phi \equiv 0$ or the limit set L is sparse in a special sense; *i.e.*, L is a Carleson set.

Conversely, Pommerenke [10] has recently shown that if L is a Carleson set, then there exists an f_0 in $A_2^{\infty}(\Gamma)$ such that $c(\gamma, f_0) = 0$ for all γ in Γ . I wish to thank Professor Pommerenke for our discussions on this topic. Also, I wish to thank the referee for pointing out a gap in the original proof of Theorem 1.

2. PRELIMINARIES

A closed set E of Lebesgue measure zero contained in ∂D is said to be a Carleson set if in the canonical representation of its complement $\partial D \setminus E$ as a countable union of disjoint open intervals I_n , the lengths $\ell(I_n)$ satisfy

Received January 28, 1976. Revisions received April 20, 1976, August 20, 1976, February 23, 1977, and April 24, 1977.

Michigan Math. J. 24 (1977).