GROWTH CONDITIONS AND UNIQUENESS FOR WALSH SERIES

William R. Wade

Let Ψ_0 , Ψ_1 , \cdots denote the Walsh functions defined on the group 2^{ω} (see [2]). Let F be a finite-valued function belonging to $L^1(2^{\omega})$, and let E^* be a countable subset of the group 2^{ω} . Skvortsov [5] has shown that if $S = \sum a_k \Psi_k$ is a Walsh series satisfying

(1)
$$\liminf_{n\to\infty} S_{2n}(x) \leq F(x) \leq \limsup_{n\to\infty} S_{2n}(x), \quad x \notin E^*,$$

and if a_k converges to zero as $k\to\infty$, then S is the Walsh-Fourier series of F. Crittenden and Shapiro [1] have studied Walsh series which satisfy the weaker growth condition $\lim_{n\to\infty}\ 2^{-n}S_{2^n}(x)=0,\ x\in 2^\omega$. Under this condition, they showed that if the right-hand side of (1) holds, and if

(2)
$$\lim_{n \to \infty} \sup_{x \to \infty} |S_{2n}(x)| < \infty, \quad x \notin E^*,$$

then S is a Walsh-Fourier series.

We shall obtain the following result concerning uniqueness under an even weaker growth condition.

THEOREM. Let $S=\sum a_k \Psi_k$ be a Walsh series and suppose that (1) holds for a finite-valued integrable function F and a countable subset E^* of the group 2^ω . Suppose further that

(3)
$$\lim_{n \to \infty} \inf 2^{-n} S_{2^{n}}(x) \leq 0 \leq \lim_{n \to \infty} \sup 2^{-n} S_{2^{n}}(x), \quad x \in E^{*} \cup D^{*},$$

where D^* is the set of points in the group 2^{ω} which terminate in 0's or terminate in 1's. Then S is the Walsh-Fourier series of F.

Our result generalizes Skvortsov's theorem, but it does not generalize Crittenden and Shapiro's theorem. Instead, it restores the left-hand side of (1) in order to get rid of hypothesis (2). In connection with this, it is interesting to note that Saginjan [4] has shown that condition (1) holds off a set of measure zero whenever (2) is satisfied. Hence, our theorem shows that if we insist that this null-set be countable, we can discard (2) altogether. For other related results, see [6] and [7].

To prove the theorem, for each $x \in [0, 1)$ set $f(x) = F(\mu(x))$, $\psi(x) = \Psi(\mu(x))$, and $s(x) = S(\mu(x))$, where μ is Fine's map from [0, 1) to the group 2^{ω} (see [2]). Extend f and s to $(-\infty, \infty)$ as periodic functions of period 1. Let $E = \mu^{-1} E^*$, and let D be the set of dyadic rationals.

Received April 5, 1976. Revision received July 19, 1976.

Michigan Math. J. 24 (1977).