A SELECTOR PRINCIPLE
FOR E% EQUIVALENCE RELATIONS

John P. Burgess

Let J = “2, the space of functions from the set w of natural numbers to
2 = {0, 1} with its topology as a countable product of two-point discrete spaces.
We assume familiarity with the hierarchy of Zn, Hln and Arl1 subsets of J and its
finite Cartesian powers JX. (See e.g., [13], Chapters 14-16.) We will be interested
in equivalence relations E on J which are Zi as subsets of J4. A selector set or
transversal for an equivalence E on J is a subset S C J containing exactly one

element of each E-equivalence class. Our goal is to determine the set-theoretic
strength of the following Selector Principle:

(*) Every Zl equivalence relation on J has a Al selector.

(Let us note right away that any Zl selector S for a Z‘l (or even = 1) equiva-
lence E is automatically Hl and hence AZ, since

= {x: 1Hy(y ¢ S & XEy & x #+ y) }.

Thus in (*) we could have written Z for. Al without affecting the strength of the
principle.)

It has long been known that (*) is consistent with, but independent of, the usual
axioms (ZFC) of set theory. Work of D. Myers [12] provides more detailed informa-
tion. The main contribution of the present paper is as follows: [t is well known that
if every real is constructible, then every Z{ equivalence velation on the veals has a
Ei selector; the converse is not provable in ZFC. This result was announced in [2].

In our work we make use of the following Ramsey-style theorem of Galvin: Le¢
the set [J ] of two-element subsets of J be partitioned inlo finitely many pieces in a
nice enough way (so that for each piece A the corresponding subset

16, ¥): {x, y} e A}

of J2 has the Baire property). Then theve is a pevfect subset P of J such that all
two-element subsets of P belong to the same piece of the paritition. Galvin’s result
was announced in [3] and [4]. Overlooking his work, we rediscovered it and an-
nounced it in [2]. Since no proof has so far been published, with Prof. Galvin’s kind
permission we are including one here.

Section 1 of the present paper contains a survey of known results concerning the
status of (*). Section 2 contains a proof of the partition theorem mentioned above,
and Section 3 a proof of Con(ZFC + (*) + 71(Every real is constructible)).
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