FOURIER-STIELTJES TRANSFORMS OF STRONGLY CONTINUOUS MEASURES

L. Thomas Ramsey and Benjamin B. Wells, Jr.

1. INTRODUCTION AND PRELIMINARIES

Let G denote throughout a compact abelian group and Γ its dual. For μ belonging to M(G), the space of regular bounded Borel measures on G, the Fourier-Stieltjes transform of μ is given by $\widehat{\mu}(\gamma) = \int_G \overline{\gamma(g)} \ d\mu(g)$, $\gamma \in \Gamma$.

Let $0 \le \varepsilon \le 1$. We shall be concerned with measures μ whose transforms satisfy the following separation condition:

(1, ϵ) For every $\gamma \in \Gamma$, either $|\hat{\mu}(\gamma)| \geq 1$ or $|\hat{\mu}(\gamma)| < \epsilon$.

We shall call μ strongly continuous if

(2) $|\mu|(g+H) = 0$ for all $g \in G$ and all closed subgroups H of G such that G/H is infinite.

The main result of this paper may be stated qualitatively as follows. For each C>0, there is some $\epsilon=\epsilon(C)>0$ such that if μ satisfies $(1,\epsilon)$, (2), and $\|\mu\|\leq C$, then $\Lambda=\left\{\gamma\in\Gamma\colon \left|\hat{\mu}(\gamma)\right|\geq 1\right\}$ is a finite set. It will turn out that $\epsilon=\epsilon(C)$ may be chosen independently of G. An alternative formulation of our main result is the following. There is some constant A independent of G such that $\|\mu\|\geq -A(\log\epsilon)^{1/5}$ for all $\mu\in M(G)$ satisfying $(1,\epsilon)$ and (2), if Λ is infinite.

Previous versions of this theorem include de Leeuw's and Katznelson's [2, p. 221] for the case G = T (the circle group). Ramsey [5] has proved the theorem for those Γ whose torsion subgroup is finite. He also obtained quantitative bounds on the size of Λ . In the general case treated here, such bounds do not exist. To see that, let G be the familiar Cantor group Π ($\mathbb{Z}/2\mathbb{Z}$), and let Λ be a finite subgroup of Γ of order 2^n . Define μ to be the trigonometric polynomial $\sum_{\gamma \in \Lambda} \gamma(g)$ on G. Since μ is the normalized Haar measure on the compact subgroup Λ^\perp of G, we have that $\|\mu\| = 1$. It is clear that μ satisfies $(1, \epsilon)$ for every $\epsilon > 0$ and (2); however, the order of Λ can be arbitrarily large.

An alternate expression of (2) is possible using the canonical homomorphism ϕ of G onto G/H. Define $\phi(\mu)$ to be that measure in M(G/H) determined by the equation $\phi(\mu)$ (B) = $\mu(\phi^{-1}(B))$ for all Borel subsets B of G/H. The equation

$$\int_{G/H} f d(\phi(\mu)) = \int_{G} f \circ \phi d\mu$$

Michigan Math. J. 24 (1977).

Received November 22, 1976.

The work of both authors was supported in part by NSF Grant MCS76-06449.