STRUCTURE OF CERTAIN POLYNOMIAL HULLS

H. Alexander

1. INTRODUCTION

Let X be a compact subset of \mathbb{C}^n with \hat{X} its polynomially convex hull. Conditions on X are known which ensure that $\hat{X} \setminus X$ is a (possibly empty) complex analytic subvariety of $\mathbb{C}^n \setminus X$ of pure dimension one. The case for X being a smooth curve was treated by Stolzenberg [11] and for X a connected set of finite linear measure, by the author [1]. The basic ideas in the subject were introduced by Wermer [12] and Bishop [4]. Whenever the set $\hat{X} \setminus X$ is an analytic set of pure dimension one, it has locally finite "area". This is because pure k-dimensional subvarieties of \mathbb{C}^n have locally finite \mathscr{H}^{2k} measure [10], where \mathscr{H}^s is s-dimensional Hausdorff measure. Our first result is a converse. It is also contained in the work of N. Sibony ([9], Theorem 17, p. 158). We have included a proof as a steppingstone for the generalization in Theorem 2 below.

THEOREM 1. Let X be a compact subset of \mathbb{C}^n . If $\mathscr{H}^2(\hat{X}\setminus X)<\infty$, then $\hat{X}\setminus X$ is an analytic subvariety of $\mathbb{C}^n\setminus X$ of dimension one. More generally, if a point of $\hat{X}\setminus X$ has a neighborhood of finite \mathscr{H}^2 measure, then \hat{X} is locally a pure one-dimensional variety in a neighborhood of the point.

When the hypothesis of this theorem fails, it may occur that $\hat{X} \setminus X$ can be a countable union of varieties, without being a subvariety of $\mathbb{C}^n \setminus X$. For example, let A be a countable compact subset of \mathbb{C} which is *not* discrete in its relative topology. Put $X = T \times A \subseteq \mathbb{C}^2$, where T is the unit circle. Then $\hat{X} \setminus X = U \times A$ (where U is the open unit disc) fails locally to be a variety at each point (z, α) with |z| < 1 for which α is a cluster point of A. Notice that the set $\hat{X} \setminus X$ has σ -finite \mathscr{H}^2 measure. (We will take this to mean that $\hat{X} \setminus X$ is a countable union of compact subsets each of which is of finite \mathscr{H}^2 measure.) The next result describes the structure of a hull with σ -finite \mathscr{H}^2 measure.

THEOREM 2. Let X be a compact subset of \mathbb{C}^n such that $\hat{X} \setminus X$ has σ -finite \mathscr{H}^2 measure. Then there exist a countable ordinal μ (possibly an integer) and a family of compact sets K_{α} with $X \subseteq K_{\alpha} \subseteq \hat{X}$, defined for each ordinal $1 \le \alpha \le \mu$, such that

- (i) $K_1 = \hat{X}$ and $K_{\mu} = X$;
- (ii) $K_{\alpha} \supseteq K_{\beta}$ for $1 \leq \alpha < \beta \leq \mu$;
- (iii) The set $W_{\alpha} \equiv K_{\alpha} \setminus K_{\alpha+1}$ is a relatively open dense subset of $K_{\alpha} \setminus X$ for $1 \leq \alpha < \mu$;
- (iv) W_{α} is a nonempty pure one-dimensional analytic subvariety of $\mathbb{C}^n \setminus K_{\alpha+1}$ for $1 \leq \alpha < \mu$;

Received August 23, 1976.

This work was supported in part by the National Science Foundation.

Michigan Math. J. 24 (1977).