BROWDER-LIVESAY INDEX INVARIANT AND EQUIVARIANT KNOTS

Chao-Chu Liang

Let T be a differentiable fixed point free involution on a (4n + 3)-dimensional homotopy sphere Σ^{4n+3} , denoted by (T, Σ^{4n+3}) . We know that (T, Σ^{4n+3}) always admits an invariant (4n + 1)-dimensional sphere S^{4n+1} [6, p. 81]. Furthermore, we may require that $(\Sigma^{4n+3}, S^{4n+1})$ be a simple knot [2].

As in [4] or [7], we may apply equivariant surgery in $X = \overline{\Sigma} - (S \times D^2)$ to obtain two 2n-connected Seifert submanifolds V_1 and V_2 of dimension (4n+2) such that $TV_1 = V_2$ and $\partial V_1 = S^{4n+1} \times \{0\}$, $\partial V_2 = S^{4n+1} \times \{\pi\}$. The set $V_1 \cup V_2$ divides $X_1 \cup V_2$ into two parts W_1 and W_2 with $TW_1 = W_2$.

Gluing V_1 and V_2 in the boundary of W_1 by the map $T\colon V_1\to V_2$, we obtain a (4n+3)-manifold Y. Let $\Sigma_1=Y\cup S^{4n+1}\times D^2$ by some PL-homeomorphism h: $\partial Y\to S^{4n+1}\times S^1$. We see that $(\Sigma_1\,,S^{4n+1})$ is a simple (4n+3)-knot. Choosing a basis $\left\{b_1\,,\cdots,b_m\right\}$ for $H_{2n+1}(V_1)$, we have a Seifert matrix A, which is the matrix for the mapping $j_1\colon H_{2n+1}(V_1)\to H_{2n+1}(W_1)$ with respect to the bases $\left\{b_i\right\}$ and $\left\{c_i\right\}$ determined by the Alexander duality. Let A^T be the transpose of A. Then $(-1)^{2n+2}A^T$ is the matrix for the mapping $j_2\colon H_{2n+1}(V_2)\to H_{2n+1}(W_1)$ with respect to the bases $\left\{T_*b_i\right\}$ and $\left\{c_i\right\}$.

From [3], we know that $A + (-1)^{2n+1} A^T = A - A^T$ is unimodular. But by using the same argument in [4], we can show that $A + A^T$ is also unimodular. For the involution (T, Σ^{4n+3}), Browder and Livesay defined an index invariant $\sigma(T, \Sigma^{4n+3})$. (For its definition, see [1] or [5].) The purpose of this note is to prove the following result.

THEOREM. $\sigma(T, \Sigma^{4n+3}) = index(A + A^T)$.

Proof. In Σ^{4n+3} , we construct an invariant submanifold M of codimension 1 as follows:

$$\mathbf{M} = \mathbf{V}_1 \cup \mathbf{S}^{4n+1} \times \mathbf{r} \mathbf{e}^0 \cup \mathbf{S}^{4n+1} \times \mathbf{r} \mathbf{e}^{\mathbf{i}\pi} \cup \mathbf{V}_2.$$

It is easy to see that M is 2n-connected, and $\{b_1\,,\,\cdots,\,b_m\,,\,T_*b_1\,,\,\cdots,\,T_*b_m\}$ forms a basis for $H_{2n+1}(M)$ by the natural inclusion $V_i\to M$, i=1 or 2. M divides Σ^{4n+3} into two parts E_1 and E_2 , with $TE_1=E_2$. Under the inclusion $W_i\to E_i$, i=1 or 2, we have a basis $\{c_i\}$ for $H_{2n+1}(E_1)$ and $\{T_*c_i\}$ for $H_{2n+1}(E_2)$.

Browder and Livesay [1] defined a symmetric bilinear form B on $H_{2n+1}(M)$ by $B(x, y) = x \cdot T_* y$. Since [3, p. 542] the $m \times m$ matrix $(b_i \cdot b_j) = A - A^T$, and $b_i \cdot T_* b_j = 0$, we see that B is represented by the matrix

$$\begin{pmatrix} 0 & A - A^{T} \\ A^{T} - A & 0 \end{pmatrix}$$

Received February 4, 1976.

Partially supported by the University of Kansas General Research Fund.

Michigan Math. J. 23 (1976).