SYMMETRIC POWERS AND LEFSCHETZ NUMBERS

Benjamin Halpern

0. INTRODUCTION

In this note we point out several ramifications of a result of Dold's [1] concerning the Lefschetz numbers of the symmetric powers of a map. In [2], many consequences were deduced from a connection between the Lefschetz numbers of iterates of a map and a certain characteristic rational function. In [1], Dold provides a similar connection between the Lefschetz numbers of symmetric powers of a map and this same characteristic function. Consequently, a portion of [2] can be carried over to symmetric powers. Theorem 3.1 is an answer to a question raised by Dold in [1]. The author is indebted to A. Dold for stimulating conversations and for shortening some of the proofs.

1. NOTATION AND CONVENTIONS

We denote the rationals by \mathscr{R} . Homology is denoted by H and coefficients are taken in \mathscr{R} . If f is a linear self-mapping of a finite dimensional vector space over \mathscr{R} , then X(f) = X(f; t) denotes its characteristic polynomial. Throughout this note Y is a compact CW-space and $g: Y \to Y$ is a continuous map.

$$\Lambda(g) = trace((Hg)_{even}) - trace((Hg)_{odd})$$

is the Lefschetz number of g, and $X(g) = X((Hg)_{even})/X((Hg)_{odd})$ is its characteristic rational function. X(g) is an element of $\mathcal{R}(t)^*$, the multiplicative group of the field $\mathcal{R}(t)$ of rational functions over \mathcal{R} in one indeterminate t. The Euler characteristic of Y is denoted by eY.

The nth symmetric power of Y is $P^{S(n)}Y = Y^n/\sim$, where two elements a and b of Y^n are equivalent under \sim provided some permutation of the coordinates takes a to b. The nth symmetric power of g is the map $P^{S(n)}(g)$: $P^{S(n)}Y \to P^{S(n)}Y$, induced from $\bar{g}: Y^n \to Y^n$, where $\bar{g}(y_1, \dots, y_n) = (g(y_1), \dots, g(y_n))$.

We denote the nth iterate of g by $g^n = g \circ g \circ \cdots \circ g$, n times.

2. PRELIMINARY RESULTS

First we state Theorem 5.9 of Dold [1].

THEOREM 2.1 (Dold).
$$\left[t^{e\,Y}\,X\left(g;\,\frac{1}{t}\right) \,\right]^{-1} \,=\, \sum_{n=0}^{\infty}\,\Lambda(\mathbf{P}^{S(n)}(g))\,\,t^n\,.$$

Received November 17, 1975.

This research was partially supported by National Science Foundation Grant GP-33756.

Michigan Math. J. 23 (1976).