SOME NEW PROPERTIES OF SUPPORT POINTS FOR COMPACT FAMILIES OF UNIVALENT FUNCTIONS IN THE UNIT DISK

W. Hengartner and G. Schober

1. INTRODUCTION

Let H(U) be the linear space of all analytic functions in the unit disk $U = \{z: |z| < 1\}$, with the topology of locally uniform convergence. Let H'(U) be the topological dual space of H(U), and $H_u(U)$ the set of all univalent functions in H(U).

In this article we shall be interested in sets of univalent functions that lie in the intersection of two hyperplanes in H(U); that is, in families

$$\mathscr{F} = \mathscr{F}(U, \ell_1, \ell_2, P, Q) = \{f \in H_{U}(U): \ell_1(f) = P, \ell_2(f) = Q\}$$

for fixed ℓ_1 , $\ell_2 \in H'(U)$ and P, Q $\in \mathbb{C}$. For example, one easily verifies that the special families

$$S = \{ f \in H_u(U) : f(0) = 0, f'(0) = 1 \},$$

$$T = \{ f \in H_u(U) : f(p) = p, f(q) = q \}, p, q \in U, p \neq q,$$

are of this form.

In an earlier article [4], we characterized the families $\mathscr F$ that are nontrivial and compact. In particular, $\mathscr F(U,\,\ell_1,\,\ell_2,\,P,\,Q)$ is nonempty and compact if and only if

(a)
$$\ell_1(Q) \neq \ell_2(P)$$

and

(b)
$$\ell_2(1)$$
 $\ell_1(g) \neq \ell_1(1)$ $\ell_2(g)$ for all $g \in H_u(U)$.

The families S and T are well known to be compact (the reader may also verify (a) and (b)). More generally, if ℓ_1 is any functional in H'(U) that does not annihilate constants ($\ell_1(1) \neq 0$), we define the families

(1.1)
$$\mathscr{G} = \{ f \in H_u(U) : \ell_l(f) = P, f'(q) = 1 \}$$
 $P \in \mathbb{C}, q \in U,$

$$(1.2) \qquad \mathcal{J} = \left\{ f \in H_{\mathbf{u}}(\mathbf{U}) \colon \ell_{\mathbf{l}}(f) = \mathbf{P}, \ \frac{f(\mathbf{p}) - f(\mathbf{q})}{\mathbf{p} - \mathbf{q}} = 1 \right\} \quad \mathbf{P} \in \mathbb{C}, \ \mathbf{p}, \ \mathbf{q} \in \mathbf{U} \ (\mathbf{p} \neq \mathbf{q}).$$

Then \mathscr{G} and \mathscr{T} satisfy (a) and (b) and, consequently, are nonempty and compact. Actually, \mathscr{G} is a limiting case of \mathscr{T} , corresponding to p = q. If $\ell_1(f) = f(0)$ and

Michigan Math. J. 23 (1976).

Received February 24, 1976.

This research was supported in part by grants from the National Research Council of Canada and the National Science Foundation.