COMPACTNESS OF λ -NUCLEAR OPERATORS

Gail R. Walker

1. INTRODUCTION

It is evident from the work of Persson and Pietsch [6] that the class of nuclear operators depends on ℓ_1 , the space of absolutely convergent series. Replacing ℓ_1 by an arbitrary sequence space λ , we obtain a new class of operators called λ -nuclear, and we can pose questions motivated by known results in the case $\lambda = \ell_1$. The present work addresses the problem of under what restrictions the λ -nuclear operators are compact. Assuming that λ is a Banach space, Section 3 gives necessary and sufficient conditions on λ for λ -nuclear operators to be compact. Section 4 discusses a condition on the range of the operators that yields the same result.

2. PRELIMINARIES

We use λ to denote a *sequence space*; that is, a vector space whose elements are sequences of complex numbers, and we use λ^{\times} for the *Köthe dual* of λ .

 $(\lambda^{\times} = \{b: \sum_{i=1}^{\infty} |a_i b_i| < \infty \text{ for all } a \in \lambda \}.)$ A linear operator T between Banach spaces X and Y is λ -nuclear (respectively, nuclear) if

(1)
$$Tx = \sum_{n=1}^{\infty} a_n \langle x, f_n \rangle y_n for all x \in X,$$

where $\{a_n\}_{n=1}^{\infty} \in \lambda$ (respectively, ℓ_1), $f_n \in X'$ and $\sup_n \|f_n\| < \infty$, $y_n \in Y$ and $\{\langle y_n, g \rangle\}_{n=1}^{\infty} \in \lambda^{\times}$ for all $g \in Y'$. The series in (1) is required to converge in the norm topology on Y and (1) is referred to as a λ -nuclear representation for T. We will make use of some basic properties of λ -nuclear operators that have been discussed in sections (1.1) and (1.2) of [3].

All sequence spaces will be assumed to include $\phi,$ the set of finitely nonzero sequences, and to be $\mathit{solid},$ which means that a ε λ if b ε λ and $\left|a_i\right| \leq \left|b_i\right|$ for all i. Recall that a sequence space is a BK-space if it is a Banach space and each of the coordinate maps a \rightarrow a_i is continuous. A sequence space λ is an AK-space if it is a topological vector space and x = lim $P_n\,x$ for each x ε λ , where

 $P_n x = (x_1, x_2, \cdots, x_n, 0, \cdots)$. We say that λ is *perfect* if $\lambda = \lambda^{\times\times}$. The abbreviation $\lambda \mu$ will be used for the set of products $\{a_i b_i\}_{i=1}^{\infty}$ formed by taking a ϵ λ and b ϵ μ . We say that λ is μ -invariant if $\lambda = \mu \lambda$. Finally, c_0 denotes the BK-AK-space of sequences convergent to zero; ℓ_{∞} is the BK-space of bounded sequences. Both have sup norm.

Received January 12, 1976.

These results constitute a portion of the author's doctoral dissertation completed at Indiana University under the direction of Professor Grahame Bennett in May, 1975.

Michigan Math. J. 23 (1976).