ON AUTOMORPHIC FORMS AND CARLESON SETS

Ch. Pommerenke

1. INTRODUCTION

Let Γ be a Fuchsian group in the unit disk $D \subseteq \mathbb{C}$ and let $L \subseteq \partial D$ be its limit set. An automorphic form of weight q $(q = 0, \pm 1, \cdots)$ is an analytic function f(z) $(z \in D)$ such that

(1.1)
$$f(\gamma(z)) \gamma'(z)^{q} \equiv f(z) \qquad (\gamma \in \Gamma).$$

Let $A_2^{\infty}(\Gamma)$ be the space of automorphic forms of weight 2 with

(1.2)
$$\sup_{z \in D} (1 - |z|^2)^2 |f(z)| < \infty.$$

This space was introduced by L. Bers [1] and has applications, for instance, in Teichmüller space theory [2, p. 272]. The theory of the related spaces $A_q^P(\Gamma)$ $(1 \le p \le \infty, \ q=2, \ 3, \ \cdots)$ is described, for instance, in the book of Kra [5].

The *Eichler integral* of $f \in A_2^{\infty}(\Gamma)$ is defined by

(1.3)
$$h(z) = \frac{1}{2} \int_0^z (\zeta - z)^2 f(\zeta) d\zeta \quad (z \in D);$$

that is, by h'''(z) = f(z) and h(0) = h'(0) = h''(0) = 0. It follows from (1.1) that

(1.4)
$$h(\gamma(z))/\gamma'(z) = h(z) + c_{\gamma}(z) \qquad (\gamma \in \Gamma),$$

where the *Eichler period* $c_{\gamma}(z)$ is a polynomial of degree ≤ 2 . The Eichler periods are elements of the Eichler cohomology group $H^1(\Gamma, \Pi_2)$ [5, pp. 148, 196], and (1.4) defines a homomorphism from $A_2^{\infty}(\Gamma)$ into $H^1(\Gamma, \Pi_2)$. Bers [1] has shown that this homomorphism is injective for groups of the first kind (that is, $L = \partial D$). We shall prove that it is injective if and only if L is not a Carleson set.

A closed set $E \subset \partial D$ is called a Carleson set if

(1.5)
$$\sum_{n} \ell_{n} = 2\pi, \qquad \sum_{n} \ell_{n} \log \frac{2\pi}{\ell_{n}} < \infty,$$

where ℓ_n are the lengths of the component arcs of $\partial D \setminus E$. It was proved by L. Carleson [3] that if a function is analytic in D and belongs to $\operatorname{Lip}\alpha$ for some $\alpha>0$, then its zero set on ∂D is a Carleson set; conversely, every Carleson set is the zero set on ∂D of an analytic function even with bounded derivative. We shall use results of Taylor and Williams [9] and of Nelson [7] on Carleson sets.

Received December 1, 1975.

Michigan Math. J. 23 (1976).