TRANSLATION-INVARIANT OPERATORS ON $L^p(G)$, 0

Daniel M. Oberlin

Let G be a compact abelian group, and for $0 let <math>L^p(G)$ denote the usual Lebesgue space with respect to normalized Haar measure on G. For $g \in G$ and functions f on G we define the translation operator T_g by $T_g f(h) = f(h-g)$ for $h \in G$. The collection $\{T_g \colon g \in G\}$ is a group of linear isometries on any $L^p(G)$, and we are interested in the bounded linear operators on $L^p(G)$ which commute with this group—the translation-invariant linear operators on $L^p(G)$. The problem of characterizing these operators is sometimes known as the multiplier problem and, for $p \ge 1$, has attracted much attention. Satisfactory characterizations are available only for the case p = 1 and the trivial case p = 2. Obtaining such a characterization for any other $p \ge 1$ appears to be a most difficult task, but for p < 1 the problem seems to have been neglected. The purpose of this note is to present such a characterization when 0 .

THEOREM. Let G be a compact abelian group and fix p with $0 . The bounded linear operators on <math>L^p(G)$ which commute with each T_g (g \in G) are precisely those operators of the form

(1)
$$\sum_{i=1}^{\infty} a_i T_{g_i}, \quad \text{where } g_i \in G \text{ and } \sum_{i=1}^{\infty} \left| a_i \right|^p < \infty.$$

Proof. It is obvious that (1) defines a bounded and translation-invariant operator on $L^p(G)$. To show that each such operator is of the form (1), we require two lemmas.

LEMMA 1. Let K be a compact Hausdorff space and let λ be a complex-valued regular Borel measure on K. If for some p (0 and some finite positive number M we have

(2)
$$\sum_{j=1}^{m} |\lambda(E_j)|^p \leq M$$

for each m and each finite Borel partition $\{E_j\}_{j=1}^m$ of K, then λ is of the form $\sum_{i=1}^\infty a_i \, \delta_{x_i}$, where δ_{x_i} is the unit mass at some point $x_i \in K$ and $\sum_{i=1}^\infty \left|a_i\right|^p \leq M$.

Proof. Assume first that λ is positive and let $\lambda = \lambda_d + \lambda_c$ be the decomposition of λ into discrete and continuous parts. Then (2) holds with either λ_d or λ_c in place of λ . If $\lambda_c(K)>0$, then, as a consequence of [1, 11.44], for any $m=1,2,\cdots$ we can find disjoint Borel subsets E_1 , \cdots , E_m of K such that $\lambda_c(E_j) = m^{-1}\lambda_c(K)$, $j=1,\cdots$, m. For these E_i we have

$$\sum_{j=1}^{m} \left| \lambda_{c}(E_{j}) \right|^{p} = m(m^{-1}\lambda_{c}(K))^{p} = m^{1-p}(\lambda_{c}(K))^{p},$$

Received September 22, 1975.

Michigan Math. J. 23 (1976).