ON INNER FUNCTIONS WITH BP DERIVATIVE

P. R. Ahern and D. N. Clark

As the title suggests, this paper contains results similar to those in [2], with the spaces H^p replaced by B^p . The basic problem we consider is that of determining the B^p classes (p>0) to which the derivative ϕ' of an inner function ϕ in the unit disk belongs. Recall that the space B^p is by definition the class of functions f(z) analytic in the unit disk U and satisfying

$$\|f\|_{p} = \int_{0}^{1} \int_{0}^{2\pi} |f(re^{i\theta})| (1-r)^{1/p-2} d\theta dr < \infty.$$

(Here and in what follows, $d\theta$ denotes normalized Lebesgue measure on the unit circle.)

M. R. Cullen [8] first considered the problem of determining the B^p classes of ϕ' , for ϕ a singular inner function, and he conjectured that $\phi' \not\in B^{1/2}$ for such a function. Cullen's idea was to use this to prove a conjecture of J. G. Caughran and A. L. Shields [6] to the effect that $\phi' \not\in H^{1/2}$. H. A. Allen and C. L. Belna [3] disproved Cullen's conjecture by giving examples of singular inner functions ϕ with $\phi' \in B^p$ for all p < 2/3. The conjecture that $\phi' \not\in B^{2/3}$ for inner functions with singular factors then seemed reasonable (see, for instance, Caughran and Shields [7]). Finally, D. Protas [11] gave a sufficient condition for $\phi' \in B^p$ (p > 1/2) for ϕ a Blaschke product. (For p < 1/2, we have $\phi' \in B^p$ for any inner function [9, Theorem 5].)

In this paper we prove that if ϕ has a singular factor, then $\phi' \notin B^{2/3}$. To do this we develop (in Section 1) an integrated analogue of the angular derivative, the latter having been used in [2] to prove, among other things, the $H^{1/2}$ conjecture of Caughran and Shields. The methods of Section 1 are also applied to give a sufficient condition for the relation $\phi' \in B^p$ for ϕ a singular inner function (Section 3), to give a partial converse to Protas' condition for Blaschke products (Section 4), and to show that both Protas' condition and the partial converse are "best possible" (Sections 4 and 5).

The original $\mathrm{H}^{1/2}$ conjecture of Caughran and Shields in [6] arose in connection with problems on exceptional sets, and the solution of the $\mathrm{B}^{2/3}$ conjecture has applications to exceptional sets, as did our solution of the $\mathrm{H}^{1/2}$ conjecture in [2]. These applications are discussed in Section 2.

Throughout this paper, the similarity of our results with those in [2] is apparent; however, it seems unlikely that the results of the present paper can be obtained directly from those in [2]. One reason for this is our example (Lemma 2) of a Blaschke product B with B' ϵ B^{2/3} but B' \notin H^{1/2}.

Received September 15, 1975.

This research was supported by NSF Grants.

Michigan Math. J. 23 (1976).