SMOOTH S1-MANIFOLDS IN THE HOMOTOPY TYPE OF CP3

Italo Jose Dejter

0. INTRODUCTION

Four years ago T. Petrie [6] conjectured that if X is a closed, smooth, 2n-dimensional homotopy $\mathbb{C}P^n$ that admits a nontrivial action of S^1 , and if $h: X \to \mathbb{C}P^n$ is a homotopy equivalence, then h preserves Pontrjagin classes.

In the present paper we prove the conjecture for the case n = 3:

THEOREM 0.1. Let X be a closed, smooth S^1 -manifold such that $X^{S^1} \neq X$, and let $f: X \to \mathbb{C}P^3$ be a homotopy equivalence. Then

$$f^* \hat{\mathcal{A}}(\mathbb{C}P^3) = \hat{\mathcal{A}}(|X|),$$

where |X| denotes the underlying smooth manifold of X,

$$\hat{\mathcal{A}}(|X|) = (x_i/2) (\sinh x_i/2)^{-1} \in H^*(|X|; \mathbb{Q}),$$

and the elementary symmetric functions of the x_i^2 give the Pontrjagin classes of |X|. In particular, f preserves the Pontrjagin classes of |X|.

Furthermore, a theorem of D. Montgomery and C. T. Yang [5] implies that there is a bijective application

P: $\mathbb{Z} \to \{ \text{ diffeomorphism classes of smooth manifolds homotopy equivalent to } \mathbb{CP}^3 \}$ such that, for every $\alpha \in \mathbb{Z}$,

$$p_1(P(\alpha)) = (24\alpha + 4) z^2$$
,

where p_1 is the first Pontrjagin class and z is a generator of $H^2(\mathbb{C}P^3)$.

THEOREM 0.2. A closed smooth S^1 manifold X, homotopy-equivalent to $\mathbb{C}P^3$ and such that $X^{S^1} \neq X$, is diffeomorphic to $\mathbb{C}P^3$.

Theorem 0.1 follows from Theorem 2.1, as indicated subsequently. This is intimately related to the proof of Theorem 1.3, which completely determines the rational torsion-free equivariant K-theory of X.

1. EQUIVARIANT COHOMOLOGIES

Let G be a compact abelian Lie group that is topologically cyclic, in other words, such that there exists a dense generator g in G. Let R(G) be the representation ring of G. Let Z be a closed, smooth G-manifold such that $Z^G \neq Z$, and let $\hat{K}_G^*(Z)$ be the quotient of the equivariant K-theory $K_G^*(Z)$ by its R(G)-torsion.

Received May 27, 1975.

Michigan Math. J. 23 (1976).