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A bounded operator T on a Hilbert space & is reductive if every invariant
subspace of T reduces T. It is well known that every reductive operator is normal
if and only if every operator has a nontrivial invariant subspace [4]. In 1963, T.
Andd [1] showed that every compact reductive operator is normal, and in 1968 P.
Rosenthal [10] was able to extend this result by showing that every polynomially
compact reductive operator is normal. In this paper we use the work of V. I..
Lomonosov [7] to generalize these results; the principal theorem is that a reductive
operator that commutes with an injective compact operator must be normal.

Rosenthal [11] has recently shown that if an injective compact operator is con-
tained in the commutant of a reductive algebra, then the reductive algebra must be
self-adjoint. In addition, recent papers by E. Azoff [2] and A. 1. Loginov and V. S.
Sul’man [6] contain generalizations of Rosenthal’s result. Rosenthal’s theorem is
stronger than our Theorem 1; however, the techniques used herein are quite differ-
ent from Rosenthal’s, and several of the intermediate results are of interest in
themselves. The proof of the first proposition is essentially in [1] and [10]; we
include it here for completeness.

PROPOSITION 1. Let C be a nonzevo compact opevator. Let G be a family of
subspaces with the followi:g properties:

(i) ¢ is totally ovdeved by veverse inclusion;
(ii) each subspace - in G reduces C;

(iii) for each 4 in 4, ||C || =|c].

Then the intevsection M = N ¢ is nonzero and lclz,| =]c].

Proof. For each .« € 4, C | A is a compact operator, and since a compact
operator achieves its norm, there is a unit vector f_,, € .# such that
Ict il = llc || = |c|l. Because the f_, all lie in the unit ball of the Hilbert
space and the unit ball is weakly compact, there is a weak cluster point f; of the set
{fd,/} “in the unit ball. We consider {f ,/,,} as a net, indexed by the totally ordered
set @ ; some subnet of {fu//} converges to fp, and we assume without losing gen-
erality that the full net {f 4| convergesto fy. Since C is compact, Cf , — Cfy in

norm, whence |[Cfo] = |C||; because C is nonzero, £y is nonzero. Moreover, for
each .« ' in ¢, the tail of the net {fU{[} lies in %' (since ¥ is ordered by re-
verse inclusion), so that fg lies in .# (. Thus ¢ is nonzero and

lelaol = Jef.
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