A NORM INEQUALITY IN HYPONORMAL OPERATOR THEORY

C. R. Putnam

1. INTRODUCTION

Recall that a bounded operator T on a Hilbert space § is hyponormal if

(1.1)
$$T^*T - TT^* = D \ge 0$$
,

and $completely\ hyponormal$ if, in addition, there is no nontrivial subspace on which T is normal. If T = H + iJ is the Cartesian representation of T, then (1.1) is equivalent to

(1.2)
$$HJ - JH = -iC$$
, where $D = 2C \ge 0$.

It is known that the spectra of H and J are the (real) sets obtained by projecting the spectrum $\sigma(T)$ of T onto the x- and y-axes; see [2, p. 46]. Also, by [3],

$$(1.3) 2\pi \|C\| \leq \operatorname{meas}_{2}(\sigma(T)).$$

Further, if $H = \Re(T)$ has the spectral resolution

$$(1.4) H = \int t dE_t,$$

and if T is completely hyponormal, then the spectral family $\{E(\cdot)\}$ is strongly absolutely continuous, that is, $\|E_t f\|^2$ is absolutely continuous in t for each f in \mathfrak{S} ; see [2, pp. 20, 42].

If α is a Borel set on the real line, then $T_{\alpha} = E(\alpha) T E(\alpha)$ is hyponormal, in fact, $T_{\alpha}^* T_{\alpha} - T_{\alpha} T_{\alpha}^* = E(\alpha) D E(\alpha) \geq 0$. If $\alpha = \Delta$ is an open interval, and if $E(\alpha) \neq 0$, it follows from the results of [4] that

(1.5)
$$\sigma(\mathbf{T}_{\Delta}) = (\sigma(\mathbf{T}) \cap \{\mathbf{z} : \Re(\mathbf{z}) \in \Delta\})^{-},$$

where $T_{\Delta} = E(\Delta) T E(\Delta)$ is regarded as an operator on $E(\Delta)$ \mathfrak{P} . Since $\sigma(E(\Delta) J E(\Delta))$ is the projection of $\sigma(T_{\Delta})$ onto the y-axis, one easily obtains from (1.5) the norm of $E(\Delta) J E(\Delta)$ (as an operator either on \mathfrak{P} or on $E(\Delta) \mathfrak{P}$) in terms of the spectrum of T in the form

(1.6)
$$\|E(\Delta)JE(\Delta)\| = \sup\{|\Im(z)|: z \in \sigma(T) \text{ and } \Re(z) \in \Delta\}.$$

If F(t) denotes the linear measure of the intersection of $\sigma(T)$ with the line $\Re(z) = t$, so that

(1.7)
$$F(t) = \text{meas}_{1} [\sigma(T) \cap \{z: \Re(z) = t\}],$$

Received July 30, 1975.

This work was supported by a National Science Foundation research grant.

Michigan Math. J. 22 (1975).