SEMIFREE INVOLUTIONS ON SPHERE KNOTS

Chao-Chu Liang

If m is a positive integer, an m-knot (S^{m+2}, Σ^m) consists of an (m+2)-homotopy sphere S^{m+2} and an m-homotopy sphere Σ^m differentiably embedded in it. A (2n-1)-knot is simple if the homotopy groups of its complement $S^{2n+1} - \Sigma^{2n-1}$ coincide with those of the circle in dimension less than n. From now on, we assume $n \geq 2$.

To each simple knot $(S^{2n+1}, \Sigma^{2n-1})$ there corresponds an associated Seifert matrix A (see [1], [3]) such that $A + \epsilon A^T$ is unimodular, where $\epsilon = (-1)^n$ and A^T is the transpose of A. The matrix A is determined by a Seifert submanifold V, a 2n-submanifold of S^{2n+1} that bounds M^{2n-1} ; and V can be chosen to be (n-1)-connected (see [2]). The normal bundle of Σ^{2n-1} in S^{2n+1} is trivial. Let $Y = \text{closure}(S^{2n+1} - \Sigma^{2n-1} \times D^2)$, and let Y_V be the (n-1)-connected manifold obtained by cutting S^{2n+1} along V with $\partial Y_V = V_+ \cup V_-$ (two copies of V). The matrix A is the matrix for the mapping $j_+\colon H_n(V_+) \to H_n(Y_V)$, and the matrix $(-1)^{n+1}A^T$ is the matrix for the mapping $j_-\colon H_n(V_-) \to H_n(Y_V)$, with respect to the bases given by the Alexander duality (see [1], [2]).

Let T be an involution (T^2 = identity) acting differentiably on S^{2n+1} with Σ^{2n-1} as its fixed points, denoted by (T; S^{2n+1} , Σ^{2n-1}). If (S^{2n+1} , Σ^{2n-1}) is simple, then the orbit space S^{2n+1}/T is easily seen to be a homotopy sphere, and (S^{2n+1}/T , Σ^{2n-1}) is again a simple knot. The purpose of this note is to determine which simple knot can be realized as the orbit space of such an involution.

PROPOSITION. A simple knot $(S^{2n+1}, \Sigma^{2n-1})$ is the orbit space of a $(T; S_1^{2n+1}, \Sigma^{2n-1})$ if and only if both $A + A^T$ and $A - A^T$ are unimodular, where A is its Seifert matrix determined by some (n-1)-connected submanifold V^{2n} in S^{2n+1} .

Proof. Let $\{W_i,\,V_{+i},\,V_{-i}\}$ (i = 1, 2) be two copies of $\{Y_V,\,V_+,\,V_-\}$. Construct a manifold X by joining W_1 and W_2 by gluing V_{+1} to V_{-1} and V_{+2} to V_{-1} . From the Mayer-Vietoris sequence

$$\longrightarrow H_{q+1}(X) \longrightarrow H_{q}(V_{+1}) \oplus H_{q}(V_{-1}) \xrightarrow{\lambda_{q}} H_{q}(W_{1}) \oplus H_{q}(W_{2}) \longrightarrow H_{q}(X) \longrightarrow$$

we see that

$$H_q(X) = \begin{cases} Z & \text{if } q = 0 \text{ or } q = 1, \\ 0 & \text{if } q \neq n \text{ and } q \neq n + 1, \end{cases}$$

and $H_n(X) = H_{n+1}(X) = 0$ if and only if λ_n is unimodular. But

Received May 12, 1975.

This research was supported in part by National Science Foundation grant MPS 72-05055 A02.

Michigan Math. J. 22 (1975).