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1. INTRODUCTION AND NOTATION

Quasialgebraic operators generalize algebraic operators, in the same way that
quasinilpotent operators generalize nilpotent operators. An element T of a Banach
algebra is quasialgebraic if one can find a sequence {p,} of monic polynomials
with deg p, = d(n), such that lim, " po(T) || 1/d(n) = 0, This concept was first intro-
duced by P. R. Halmos in [14], where he related it to the potential-theoretic notion
of capacity. As a starting point for our paper, we rely on some of his observations
and techniques to focus on this question: if T is a bounded operator on a Hilbert
space, and the coset v(T) in the Calkin algebra is quasialgebraic, does it contain a
compact perturbation of T that is quasialgebraic with respect to the same sequence
of polynomials?

More precisely, W. B. Arveson has asked: if {p,} is a sequence of monic
polynomials of degrees d(n) such that limy ||p,(v(T))||}/d(n) = 0, does there exist a
compact K such that lim  [|p, (T +K) ||1/d(“) = 0? Like other questions involving
the structure of the Calkin algebra, it is recalcitrant. But it deserves attention, for
an affirmative answer would imply two previous results: for a Hilbert space
operator T, C. L. Olsen has proved that if p(¢(T)) =0, for some polynomial p,
then there is a compact K with p(T + K) =0 [17]; T. T. West has shown that if

lim_ [|[v(T)]||1/? = 0, then there is a compact K such that lim_ [|(T + K)=[|1/n =0

[24, Theorem 7.5]. In other words, an algebraic coset in the Calkin algebra contains
an algebraic operator, and a quasinilpotent coset contains a quasinilpotent operator.

If the answer to Arveson’s question is yes, then a quasialgebraic coset in the
Calkin algebra must contain a quasialgebraic operator. In fact, we show that even
more is true, by observing that a coset and every element in it must have the same
capacity [Section 2]. These results were also obtained independently by David S. G.
Stirling [22]. Complications arise when we insist that some compact perturbation of
T be quasialgebraic with respect to the same sequence of polynomials as v(T).
However, if the sequence {pn} of monic polynomials has a subsequence of bounded
degree, then, using Halmos’s techniques and Olsen’s theorem, we can easily answer
Arveson’s question. In any case, an application of a theorem of J. G. Stampfli [21]
enables us to answer a weakened version of the question [Section 3]; that is, if a Hil-
bert space operator T is such that lim_ ||p (v(T))||1/d() =0 for a sequence {p,}
of monic polynomials with deg p,, = d(n), then there exist a compact K and a se-
quence {s(n)} of positive integers such that

lim_ ||[p (T +K)]st)||1/dm)s(n) = ¢
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