BOUNDING A FREE ACTION OF A DIHEDRAL GROUP

R. J. Rowlett

1. RESULTS

Let C be a cyclic group of order 2^{n+1} ($n \ge 1$), and let G be one of the non-abelian split extensions of C by Z_2 . The dihedral group of order 2^{n+2} is one example; there are two others [5, p. 187].

This paper considers smooth actions of G preserving a unitary (that is, weakly complex) structure on a smooth manifold. Let $U_*(G)$ be the bordism of all such actions, and let $\hat{U}_*(G)$ be the corresponding bordism of free unitary G-actions. Full definitions can be found in [10]. By [10, Proposition 2.3], we know that $\hat{U}_*(G) \cong U_*(BG)$.

THEOREM. The kernel of the forgetful homomorphism $s: \hat{U}_*(G) \to U_*(G)$ is precisely $\tilde{U}_*(BG)$.

COROLLARY. Let $\phi: G \times M \to M$ be a free unitary G-action on a closed manifold. Then $[M, \phi] = 0$ in $U_*(G)$ if and only if [M] = 0 in U_* .

To derive the corollary, one uses the analogue of [4, (19.4)] for unitary actions; this shows that [M] = 0 if and only if [M, ϕ] ϵ im $\tilde{U}_*(BG)$.

It is worth noticing that to prove the theorem for any group, it suffices to establish it for the Sylow subgroups (see [7, Proposition 6]). In particular, our results imply the theorem and corollary for a dihedral group of any order.

2. A TRANSVERSALITY LEMMA

Suppose H is a finite group. Let M and N be smooth H-manifolds, and let $P \subseteq N$ be an invariant submanifold. One says that transversality holds for (M, N, P) if, given an equivariant $f: M \to N$ and a closed invariant $A \subseteq M$ such that f is transverse to P on A, one may deform f by an H-homotopy making it transverse to P on all of M and leaving f fixed in a neighborhood of A.

LEMMA 1. Transversality holds for (M, N, P) if either

- (a) H acts freely on M or
- (b) H is nilpotent and the normal bundle $\nu \to P$ has the property that, if hp = p for some $h \in H$ and $p \in P$, then hx = x for all $x \in \nu_p$.

Proof. The sufficiency of (a) is fairly well known; a proof is to appear in [8, Proposition 2.2]. The sufficiency of (b) is a generalization of [10, Lemma 4.2]. Since H is nilpotent, it contains a central cyclic subgroup T of prime order. By the argument of [10, Lemma 4.2], we may assume that the fixed set \mathbf{M}^{T} of T is empty.

Received October 3, 1974.

Michigan Math. J. 21 (1974).