UNIFORM ALGEBRAS CONTAINING THE REAL AND IMAGINARY PARTS OF THE IDENTITY FUNCTION

James E. Thomson

A uniform algebra on $\Gamma = \{z \colon |z| = 1\}$ is a subalgebra of $C(\Gamma)$ that is closed under the topology of the supremum norm, contains the constants, and separates the points of Γ . The canonical example is the disk algebra A, which is the uniform algebra consisting of all functions in $C(\Gamma)$ that extend continuously to $\{z \colon |z| \le 1\}$ to be analytic on $D = \{z \colon |z| < 1\}$. In a recent paper [4], J. M. F. O'Connell shows that if B is a uniform algebra with $\Re B = \Re A$, then there exists a homeomorphism Φ of Γ onto Γ such that

$$B = A \circ \Phi = \{f \circ \Phi : f \in A\}.$$

W. P. Novinger [3] generalizes this result to the setting in which it is only assumed that $\Re B \supseteq \Re A$. He shows that in this case either $B = C(\Gamma)$ or $B = A \circ \Phi$ for some homeomorphism Φ . We show that to obtain the latter conclusion, it is sufficient to assume that $\Re B$ contains the real and imaginary parts of the identity function Z.

THEOREM 1. Let B be a uniform algebra on Γ such that $\Re B$ contains $\Re Z$ and $\Im Z$. Then either $B = C(\Gamma)$ or there exists a homeomorphism Φ of Γ onto Γ such that $B = A \circ \Phi$.

Proof. By hypothesis, there exist functions ψ and ϕ in B such that $\Re \psi = \Re Z$ and $\Im \phi = \Im Z$.

Case 1. Either ψ or ϕ is one-to-one on Γ . We shall assume that ψ is one-to-one on Γ . The proof for the case where ϕ is one-to-one is similar. Let W denote the interior of the Jordan curve $\psi(\Gamma)$. Let f denote the Riemann mapping of W onto D; then f extends continuously to \overline{W} , mapping $\psi(\Gamma)$ homeomorphically onto Γ . By Mergelyan's theorem, f can be uniformly approximated by polynomials on $\psi(\Gamma)$, and thus $\Phi = f \circ \psi$ is in B. Hence, $A \circ \Phi \subseteq B$, or equivalently, $A \subseteq B \circ \Phi^{-1}$. Applying Wermer's maximality theorem to the uniform algebra $B \circ \Phi^{-1}$, we see that either $B \circ \Phi^{-1} = C(\Gamma)$ or $B \circ \Phi^{-1} = A$. It follows immediately that $B = C(\Gamma)$ or $B = A \circ \Phi$.

Before proceeding to Case 2, we shall establish some useful results.

LEMMA 1. Let B be a uniform algebra on Γ containing functions ψ and φ with $\Re \psi = \Re Z$ and $\Im \varphi = \Im Z$. If $\psi(z_1) = \psi(z_2)$ or $\varphi(z_1) = \varphi(z_2)$ and E_1 and E_2 are the two closed subarcs of Γ with end points z_1 and z_2 , then E_1 and E_2 are peak sets for B. Furthermore, B | E_j is a closed subalgebra of $C(E_j)$ for j = 1, 2.

Proof. If $z_1 = z_2$, then the conclusion is trivial. We shall assume that $\psi(z_1) = \psi(z_2)$. If $\phi(z_1) = \phi(z_2)$, the proof is similar. Note that our assumption implies that $z_2 = \bar{z}_1$.

Let K be the union of $\psi(\Gamma)$ and the bounded components of \mathbb{C} - $\psi(\Gamma)$. There exists a closed rectangle R containing $\psi(E_2)$ such that one edge of R is contained in $\{z: \Re z = \Re \psi(z_1)\}$. Let f be the Riemann mapping of int R onto D; then f

Received July 24, 1974.

Michigan Math. J. 21 (1974).