COMMON FIXED POINTS OF COMMUTING HOLOMORPHIC MAPS OF THE HYPERBALL

T. J. Suffridge

1. INTRODUCTION

Let f and g be continuous functions on the closed unit disk of the complex plane, and suppose

- (i) f and g are holomorphic in the open unit disk,
- (ii) f and g map the closed disk into itself, and
- (iii) f and g commute under the operation of function composition.

In [10], A. L. Shields showed that under these conditions, f and g have a common fixed point. D. J. Eustice [5] has extended this result to the polydisk in complex 2-space. W. M. Boyce [1] and J. P. Huneke [8] have independently given counterexamples to show that two continuous functions that commute and map the closed unit interval into itself need not have a common fixed point. In this paper, we extend the result of Shields to finite-dimensional inner-product spaces.

For a characterization of commuting polynomials, see [9] and [2]. For a more complete discussion of the history of problems concerning commuting maps, see [1].

2. HOLOMORPHIC IDEMPOTENTS ON THE UNIT BALL OF A HILBERT SPACE

We shall use the following notation.

- (i) H is a Hilbert space (either finite-dimensional or infinite-dimensional) with inner product $\langle \cdot, \cdot \rangle$;
- (ii) B is the unit ball of H, that is, B = $\{z \in H: \langle z, z \rangle < 1\}$, and \overline{B} is the closure of B;
 - (iii) $\mathcal{H}(B)$ is the set of functions $f: B \to B$ that are holomorphic on B; and
- (iv) if $f \in \mathcal{H}(B)$, then f^k is defined inductively for $k = 1, 2, \cdots$ by $f^l = f$ and $f^{k+1} = f \circ f^k$.

The unit ball B of H is known to be a homogeneous domain (see [3] and [7]). That is, corresponding to each pair of points u, v ϵ B there exists a function L ϵ $\mathscr{H}(B)$ such that L(u) = v, L is a one-to-one map of B onto B, and L⁻¹ is holomorphic. Such a map is called a biholomorphic map of B onto B. For example, if we write u in the form u = α b, where $\|b\| = 1$ and α is a complex number such that $|\alpha| < 1$, then the map L_u defined by

Received May 9, 1974.

This research was supported in part by the National Science Foundation, Grant GP-39053.

Michigan Math. J. 21 (1974).