A CHARACTERIZATION OF THE COMPLEX SPHERE

Bang-yen Chen and Koichi Ogiue

1. INTRODUCTION

Let $P_{n+1}(C)$ denote the (n+1)-dimensional complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature 1, and let z_0, z_1, \dots, z_{n+1} be a homogeneous coordinate system of $P_{n+1}(C)$. Let

$$Q_n = \{ (z_0, z_1, \dots, z_{n+1}) \in P_{n+1}(C) | \sum z_i^2 = 0 \}.$$

Then, with respect to the induced Kaehler structure, Q_n is an Einstein manifold with scalar curvature n/2, and it is complex analytically isometric to the Hermitian symmetric space $SO(n+2)/SO(2) \times SO(n)$. We call Q_n an n-dimensional *complex sphere*. In [3], the second author proved the following.

PROPOSITION. Let M be an n-dimensional complete Kaehler submanifold immersed in $P_m(C)$. If the Ricci curvature of M is everywhere greater than n/2, then M is totally geodesic.

The purpose of this paper is to prove the following theorem, which gives a local characterization of complex spheres.

THEOREM. Let M be an n-dimensional Kaehler submanifold immersed in $P_m(C)$. If the Ricci curvature of M is everywhere equal to n/2, then M is locally Q_n in some $P_{n+1}(C)$ in $P_m(C)$.

For notation and terminology, we follow [4], unless it is otherwise stated.

2. PRELIMINARIES

We prepare a brief summary of some basic facts. Details are found in [4].

Let M be an n-dimensional Kaehler submanifold immersed in $P_m(C)$. Let g, S, and ρ denote the Kaehler metric, the Ricci tensor, and the scalar curvature of M, respectively. If we denote by σ or A_α the second fundamental form of the immersion, then

(1)
$$S(X, Y) = \frac{n+1}{2} g(X, Y) - 2 \sum g(A_{\alpha}^2 X, Y),$$

(2)
$$\rho = n(n+1) - \|\sigma\|^2.$$

Moreover, σ and A_{α} satisfy the differential equation

Received August 1, 1974.

The authors acknowledge support from NSF Grant GP-36684 and from NSF Grant GP-36684 and the Matsunaga Science Foundation, respectively.

Michigan Math. J. 21 (1974).