FINITELY GENERATED FUCHSIAN GROUPS AND CHARACTER-AUTOMORPHIC NORMAL FUNCTIONS

E. Röding

Ch. Pommerenke [4] (Corollary 2) has shown that for every infinitely generated Fuchsian group there exists a character-automorphic function f(z) in D = $\{|z|<1\}$ with

$$1 \le \sup_{z \in D} (1 - |z|^2) f^{\#}(z) \le K_0 < \infty,$$

where K_0 is an absolute constant. Here we use the notation

$$f^{\#}(z) = |f'(z)|/(1 + |f(z)|^2)$$

for the spherical derivative. We prove the following supplementary result.

THEOREM. For every finitely generated Fuchsian group Γ there exists a non-constant character-automorphic function g(z) with

(1)
$$\sup_{z \in D} (1 - |z|^2) g^{\#}(z) \leq K_0 < \infty,$$

where K_0 is an absolute constant.

Proof. The case where Γ is finitely generated and of the second kind has been treated by Pommerenke in Section 3 of his paper [4]. Clearly, it suffices to consider the case where D/Γ is a compact Riemann surface. According to A. Marden [2], one can choose a conjugate group $\Gamma^* = \psi \circ \Gamma \circ \psi^{-1}$ such that there exists a fundamental region of Γ^* in D whose interior contains a circle K around 0 with radius $\rho > 0$ independent of Γ^* . There exists a single-valued potential function u on $R = D/\Gamma^*$ that has the singular behavior of $\log |z/(z-z_0)|$ near the points on R corresponding to 0 and some fixed point $z_0 \in K$ ($z_0 \neq 0$), and is harmonic elsewhere. If \tilde{u} denotes a conjugate harmonic of u, then the function $f = \exp(u + i\tilde{u})$ is a nonconstant character-automorphic function in D with respect to Γ^* .

Let ρ_1 denote a positive number such that $|z_0| < \rho_1 < \rho$, let

$$\mathbf{B} \,=\, \left\{ \, \left| \, \mathbf{z} \, \right| \,< \rho \, \right\} \,, \qquad \beta \,=\, \left\{ \, \left| \, \mathbf{z} \, \right| \,= \rho \, \right\} \,, \qquad \mathbf{B}_1 \,=\, \left\{ \, \left| \, \mathbf{z} \, \right| \,< \rho_1 \, \right\} \,, \qquad \alpha \,=\, \left\{ \, \left| \, \mathbf{z} \, \right| \,= \rho_1 \, \right\} \,,$$

let A denote the complement of B_1 on R, and let $u_0 = \log |z/(z-z_0)|$. The alternating method of Schwarz (see R. Nevanlinna [3, pp. 151-153]) requires the construction of functions u_n and v_n , harmonic in A and B, respectively, and with the boundary values

(2)
$$u_n = v_{n-1} + u_0$$
 on α $(v_0 = 0)$, $v_n = u_n - u_0$ on β .

Received July 31, 1974.

Michigan Math. J. 21 (1974).