THE WHITEHEAD TORSION OF A FIBER-HOMOTOPY EQUIVALENCE

Douglas R. Anderson

1. INTRODUCTION AND STATEMENTS OF RESULTS

This paper is based on the observation that if $\xi = (E, p, B, F)$ is a piecewise linear (PL) fiber bundle, then p induces a homomorphism $p^*: Wh \pi_1(B) \to Wh \pi_1(E)$, where $Wh \pi$ denotes the Whitehead group of π (see Proposition 2.3).

The definition of a PL fiber bundle is given in [1]. We can also completely determine the homomorphism p* in many cases by using the results of [1].

We describe here the construction of the homomorphism p*; for complete details we refer the reader to Section 2. Let $\tau_0 \in \operatorname{Wh} \pi_1(B)$ be arbitrary, and let $f \colon B' \to B$ be a PL homotopy equivalence such that $\pi(f) = \tau_0$, where $\tau(f)$ denotes the Whitehead torsion of f. Form the induced fiber space with total space

$$f'(E) = \{(b', c) \in B' \times E | f(b') = p(e)\},$$

and notice that the map $g: f!(E) \to E$ given by g(b', e) = e is also a homotopy equivalence. Since f is PL, the space f!(E) inherits a PL structure in a natural way, and g has a Whitehead torsion $\tau(g)$. Define $p^* \tau_0 = \tau(g)$.

The following is our main result.

THEOREM A. Let $\xi_i = (E_i, p_i, B_i, F_i)$ (i = 1, 2) be PL fiber bundles with connected base and fiber, and let $g: E_1 \to E_2$ be a fiber-homotopy equivalence covering $f: B_1 \to B_2$ and inducing $h: F_1 \to F_2$. Then

$$\tau(g) = p_2^* \tau(f) + \chi(B_2) j_{2*} \tau(h),$$

where j_{2*} : Wh $\pi_1(F_2) \to Wh\pi_1(E_2)$ is induced by the inclusion j_2 : $F_2 \to E_2$.

We give the proof in Section 3. As a special case we obtain the following result, due to K. W. Kwun and R. H. Szczarba [7, Corollary 1.3].

COROLLARY B. Let $f\colon B_1\to B_2$ and $h\colon E_1\to E_2$ be homotopy equivalences. Then

$$\tau(f \times h) = \chi(F_2) k_{2*} \tau(f) + \chi(B_2) j_{2*} \tau(h),$$

where $k_{2}*$ is induced by the inclusion k_{2} : $B_{2} \rightarrow B_{2} \times F_{2}$.

Proof. This follows from Theorem A if we set $g = f \times h$ and observe that the Product Theorem of [7] shows that $p_2^*\tau = \chi(F_2)k_{2^*}\tau$ for each $\tau \in Wh\pi_1(B_2)$, where $p_2 \colon B_2 \times F_2 \to B_2$ is projection on the first factor.

Received November 7, 1973.

This research was partially supported by the NSF under grants GP29540 and GP31379.

Michigan Math. J. 21 (1974).