SYLVESTER'S PARTITION THEOREM, AND A RELATED RESULT

M. D. Hirschhorn

For k>0, let $\Pi_d(k)$ denote the set of partitions of k into distinct parts. For $\Pi\in\Pi_d(k)$, let $s(\Pi)$ be the number of sequences of consecutive integers in Π , and let $g(\Pi)$ be the number of gaps in Π . That is, let

$$g(\Pi) = s(\Pi) - 1$$

if the smallest part in Π is 1, while

$$g(\Pi) = s(\Pi)$$

if the smallest part in Π is greater than 1.

For k>0 and $r\geq 0$, let $A(k,\,r)$ denote the number of partitions of k into odd parts (repetitions allowed) exactly r of which are distinct, $B(k,\,r)$ the number of $\Pi\in\Pi_d(k)$ with $s(\Pi)=r$, $C(k,\,r)$ the number of partitions of k into even parts (repetitions allowed) exactly r of which are distinct, and $D(k,\,r)$ the number of $\Pi\in\Pi_d(k)$ with $g(\Pi)=r$, and let

$$A(0, 0) = B(0, 0) = C(0, 0) = D(0, 0) = 1,$$

$$A(k, r) = B(k, r) = C(k, r) = D(k, r) = 0 otherwise.$$

We shall prove the following two results.

THEOREM 1. B(k, r) = A(k, r) for all k and r.

THEOREM 2. $D(k, r) = C(k, r) + C(k - 1, r) + C(k - 3, r) + C(k - 6, r) + \cdots$ for all k and r.

Theorem 1 was proved arithmetically by J. J. Sylvester [4, Section 46]. Recently, G. E. Andrews [1, Section 2] gave a proof of Theorem 1 by means of generating functions. Our proofs also make use of generating functions; but they are more direct.

V. Ramamani and K. Venkatachaliengar [3, Section 2] have given a combinatorial proof of Theorem 1. A similar proof is available for Theorem 2.

For k>0 and $r, n\geq 0$, let B(k, r, n) denote the number of $\Pi\in\Pi_d(k)$ with $s(\Pi)=r$, and with no part greater than n, let

$$B(0, 0, n) = 1$$
 for $n \ge 0$,

$$B(k, r, n) = 0$$
 otherwise,

and let

Received November 1, 1973.

Michigan Math. J. 21 (1974).