THE HAUSDORFF METRIC AND CONVERGENCE IN MEASURE

Gerald A. Beer

1. INTRODUCTION

Let m denote n-dimensional Lebesgue measure in R^n . If $\left\{C_k\right\}$ is a sequence of compact sets in R^n , convergent in the Hausdorff metric to a compact set C, the sequence $\left\{m(C \bigtriangleup C_k)\right\}$ may fail to converge to zero. For example, the unit disc in the plane is the Hausdorff limit of a sequence of finite sets. Equivalently, the sequence of characteristic functions $\left\{\chi_{C_k}\right\}$ may fail to converge in measure to the characteristic function of C. We characterize the sequences $\left\{C_k\right\}$ for which $\lim_{k\to\infty} m(C\bigtriangleup C_k)$ = 0.

2. PRELIMINARIES

Let $B_{\varepsilon}(x)$ denote the closed ε -ball about a point x in \mathbb{R}^n .

Definition. Let C be a compact set in R^n . The ϵ -parallel body $B_{\epsilon}(C)$ is the compact set $\bigcup_{x \in C} B_{\epsilon}(x)$. The ϵ -annulus $A_{\epsilon}(C)$ is the compact set $B_{\epsilon}(C) \setminus C$. If C and K are compact subsets of R^n , the Hausdorff distance of C from K is

$$d(C, K) = \inf \{ \epsilon \colon B_{\epsilon}(C) \supset K \text{ and } B_{\epsilon}(K) \supset C \}.$$

If \mathscr{A} denotes the collection of compact subsets of R^n , then $\langle \mathscr{A}, d \rangle$ is a complete metric space. Each closed and bounded subspace of $\langle \mathscr{A}, d \rangle$ is compact [1]. If $\{C_k\}$ is a sequence of compact sets such that $\lim_{k\to\infty} d(C_k, C) = 0$, then for each $\epsilon > 0$, C_k is contained in $B_{\epsilon}(C)$ for all sufficiently large integers k. Since $\lim_{\epsilon\to 0+} m(B_{\epsilon}(C)) = m(C)$, the assignment $C\to m(C)$ is an upper-semicontinuous function. In addition,

$$\lim_{k\to\infty} m(C \triangle C_k) = 0$$
 if and only if $\lim_{k\to\infty} m(C \setminus C_k) = 0$.

3. RESULTS

To establish our characterization theorem, we shall use the following theorem of Dini. Let $\{f_k\}$ be a sequence of upper-semicontinuous nonnegative functions defined on a compact metric space Y. Suppose for each x in Y, the sequence $\{f_k(x)\}$ converges monotonically to zero. Then $\{f_k\}$ converges uniformly to the zero function on Y.

For $\ell=1,\,2,\,\cdots$ and for each compact set C in R^n , let $m_\ell(C)$ denote $m(B_1/\ell(C))$. Of course, the assignment $C\to m_\ell(C)$ determines an upper-semicontinuous function on $\langle \mathcal{A},\,d\,\rangle$ for each ℓ .

Received December 7, 1973.

Michigan Math. J. 21 (1974).