PERIODIC HOMEOMORPHISMS OF THE 3-SPHERE AND RELATED SPACES

Paik Kee Kim

1. INTRODUCTION

All objects in this paper are in the PL category. Let h be a periodic homeomorphism of a space M. The cyclic group generated by h shall be denoted by $\langle h \rangle$. Two actions of $\langle h \rangle$ and $\langle h' \rangle$ on M are said to be *conjugate* if there exists a homeomorphism t of M such that $\langle tht^{-1} \rangle = \langle h' \rangle$. In this case, h and h' are called *weakly equivalent*. If $tht^{-1} = h'$, then h and h' are said to be *equivalent*.

E. E. Moise [11] and F. Waldhausen [17] have shown that up to weak equivalences, the 3-sphere S^3 admits exactly one orientation-preserving homeomorphism of even period with nonempty fixed-point set (see P. A. Smith [15] and Kim [4] for alternative proofs). In the present paper, we show that up to weak equivalences S^3 admits exactly one orientation-reversing homeomorphism of period 4k. It follows that there are exactly four Z_4 -actions on S^3 , up to conjugation (see P. M. Rice [13] for free actions and Kim [4] for semi-free actions). Therefore, all Z_{2n} -actions ($n \le 2$) on S^3 are classified (for Z_2 -actions, see [8], [9], and [17]). We show further that no lens space L(p, q) (p > 2) admits an orientation-reversing homeomorphism of period n for all $n \ne 4$. We also discuss some free involutions on a lens space L(p, q).

Let h be a homeomorphism of period n on L = L(p, q). Then there exists a homeomorphism \bar{h} of $L/\langle h^k \rangle$, uniquely determined by h, such that $\bar{h}g$ = gh, where g: L \rightarrow L/ $\langle h^k \rangle$ is the orbit map generated by $\langle h^k \rangle$. We call \bar{h} the homeomorphism on L/ $\langle h^k \rangle$ induced by h. We say that h is *sense-preserving* if h# induces the identity on H₁(L). We shall denote the fixed-point set of h by Fix(h). Note that if h is orientation-reversing, then n must be even, and Fix(h) $\neq \emptyset$ by the Lefschetz fixed-point theorem.

2. ACTIONS ON S^3

Consider S^3 as a subset of C^2 , defined by $\{(z_1\,,\,z_2)\in C^2\,|\,z_1\,\bar{z}_1+z_2\,\bar{z}_2=1\}$. Define an orientation-reversing homeomorphism T of S^3 by $T(z_1\,,\,z_2)=(\omega z_1\,,\,\bar{z}_2)$, where $\omega=e^{2\pi i/n}$ and n is even. We call T the standard homeomorphism (of period n). Remark 2.1 may be helpful in elucidating the meaning of Theorem 2.2.

Remark 2.1. Let ϕ be an orientation-preserving homeomorphism of period n on S³ and with Fix(ϕ) $\neq \phi$. It is known [11] that Fix(ϕ) is a simple closed curve. By Waldhausen [17], Fix(ϕ) is unknotted for n = 2, and it is unknotted for n = 2k for all k. A well-known conjecture, due to P. A. Smith, asserts that Fix(ϕ) is unknotted for all n (see S. Eilenberg [1]). It can be seen that the fixed-point set of each orientation-reversing periodic homeomorphism on S³ consists of two points. In

Received February 13, 1974.

Michigan Math. J. 21 (1974).