LOCAL COMPLEMENTS TO THE HAUSDORFF-YOUNG THEOREM

John J. F. Fournier

1. INTRODUCTION

Let G be an infinite, locally compact, Abelian group with dual group Γ . For $1 \leq p \leq \infty$, denote by $L^p(G)$ the usual Lebesgue space relative to the Haar measure on G; define $L^p(\Gamma)$ similarly. The Hausdorff-Young theorem [11, Vol. II, p. 227] states that if $1 , then with every function f in <math>L^p(G)$ there is associated a function \hat{f} in $L^{p'}(\Gamma)$, where p' is the index conjugate to p; the mapping $f \mapsto \hat{f}$ is a bounded linear operator from $L^p(G)$ to $L^{p'}(\Gamma)$, and \hat{f} is the usual Fourier transform of f whenever $f \in L^1(G) \cap L^p(G)$. Accordingly, for $1 \leq p \leq 2$, let

$$FL^p = \{g \in L^{p'}(\Gamma): g = \hat{f} \text{ for some } f \text{ in } L^p(G)\}.$$

For measurable sets $E \subseteq \Gamma$, denote by $FL^p \mid E$ the set of all functions on E that are restrictions to E of functions in FL^p . Clearly, $FL^p \mid E \subseteq L^{p'}(E)$. This paper deals with the possibility that $FL^p \mid E \subseteq L^q(E)$ for some $q \neq p'$.

If E is either finite or locally null [11, Vol. I, p. 124], then all of the spaces $L^q(E)$ for $q<\infty$ coincide. To avoid such trivialities, we assume for the rest of this paper that the set E is infinite and not locally null. In two cases, it follows from the Hausdorff-Young theorem that $FL^p \mid E \subset L^q(E)$ for some $q \neq p'$. First, if Γ is discrete, then

$$\mathrm{FL}^\mathrm{p} \, \big| \, \mathrm{E} \, \subset \, \mathrm{L}^\mathrm{p'}(\mathrm{E}) \, \subset \, \mathrm{L}^\mathrm{q}(\mathrm{E}) \, \quad \text{ for all } \mathrm{q} \geq \mathrm{p'} \, .$$

Second, if the Haar measure |E| of E is finite, then

$$\mathrm{FL}^p \, \big| \, \mathrm{E} \, \subset \, \mathrm{L}^{p'}\!(\mathrm{E}) \, \subset \, \mathrm{L}^q\!(\mathrm{E}) \qquad \text{for all } q \leq p' \, .$$

Thus the interest lies in the remaining cases:

- (i) Γ is not discrete, and q > p';
- (ii) $|\mathbf{E}| = \infty$ and q < p'.

The following three theorems constitute the main results of this paper.

THEOREM 1. If Γ is not discrete and E is not locally null, then

$$\operatorname{FL}^{\operatorname{p}} \mid \operatorname{E} \not\subset \bigcup_{q>p'} \operatorname{L}^{q}(\operatorname{E}).$$

THEOREM 2. (a) If Γ is not discrete, then $\mathrm{FL}^p \not\subset \bigcup_{q>p'} \mathrm{L}^q(\Gamma)$.

Michigan Math. J. 20 (1973).

Received June 26, 1972.

This research was partially supported by National Research Council of Canada Operating Grant number A-4822.