SUMMING SEQUENCES FOR AMENABLE SEMIGROUPS

Steven A. Douglass

In a wide variety of settings, the special set σ_n = $\{0, 1, 2, \cdots, n-1\}$ enters into computations involving the additive semigroup Z^+ of nonnegative integers. In this paper, we identify the significant mathematical properties of the sequence $\{\sigma_n\colon n=1,\,2,\,\cdots\}$, and we show that if G is a countable, cancellative, amenable semigroup, then there exists a sequence $\{S_n\}$ of finite subsets of G possessing exactly these properties. In Section 3, we examine some examples and obtain miscellaneous properties.

1. PRELIMINARIES

Let G be a semigroup, and let m(G) denote the Banach space of bounded, real-valued functions on G endowed with the supremum norm

$$\|f\|_{\infty} = \sup \{|f(g)|: g \in G\}.$$

We shall also be interested in the subspace $\ell_1(G)$ consisting of the functions f in m(G) with finite ℓ_1 -norm $\|f\|_1 = \sum \{|f(g)| : g \in G\} < \infty$. Endowed with the convolution

$$(f_1 * f_2)(g) = \sum \{f_1(h')f_2(h''): h'h'' = g\},$$

 $\ell_1(G)$ is a real Banach algebra.

A weight on G is a nonnegative function ϕ in $\ell_1(G)$ having finite support and such that $\|\phi\|_1 = 1$. A simple weight on G is a weight ϕ that is constant on its support; that is, ϕ is a simple weight provided $\phi = |A|^{-1}\chi_A$, where A, |A|, and χ_A denote the support of ϕ , the number of elements in the support, and its characteristic function. We denote the collection of all weights by Φ , the collection of all simple weights by Φ_s . For simplicity, given a g in G, we denote by g the simple weight with support $\{g\}$.

A mean on G is a real linear functional Λ on m(G) such that for each f in m(G),

$$\inf \big\{ f(g) \colon g \, \in \, G \big\} \, \le \, \Lambda(f) \, \le \, \sup \big\{ f(g) \colon g \, \in \, G \big\} \, \, .$$

Clearly, a mean Λ is a positive linear functional such that $\Lambda(1) = 1$, where 1 denotes the function 1(g) = 1 for all g in G. If g is in G and f is in m(G), then gf and g are functions in m(G) defined by the equations

$$g_{f(h)} = f(gh)$$
 and $f^{g}(h) = f(hg)$,

respectively. A mean Λ on G is said to be *left* [right] invariant if $\Lambda(^gf) = \Lambda(f)$ [if $\Lambda(f^g) = \Lambda(f)$] for all g in G and all f in m(G). Finally, G is said to be amenable if a left invariant mean and a right invariant mean exist on G.

Received May 31, 1972.

Michigan Math. J. 20 (1973).