AN INVARIANT-SUBSPACE THEOREM

Carl Pearcy and Norberto Salinas

1. INTRODUCTION

Throughout this paper, \mathscr{H} will denote an infinite-dimensional, separable, complex Hilbert space, and $\mathscr{L}(\mathscr{H})$ will denote the algebra of all bounded linear operators on \mathscr{H} . Recall from [5] that an operator S in $\mathscr{L}(\mathscr{H})$ is *quasitriangular* if there exists an increasing sequence $\left\{P_n\right\}_{n=1}^{\infty}$ of orthogonal projections of finite rank on \mathscr{H} , converging strongly to 1, such that

$$\|P_n S P_n - S P_n\| \rightarrow 0.$$

Such a sequence $\{P_n\}$ satisfying (1) will be said to *implement* the quasitriangularity of S.

It is not known whether every quasitriangular operator has a nontrivial invariant subspace. The problem is important, because all quasinilpotent operators and all operators with compact imaginary part (acting on a separable space) are quasitriangular [4], [5]. Some invariant-subspace theorems concerning quasitriangular operators have been proved [1], [2], [3]. Perhaps the most interesting of these theorems is the result of W. B. Arveson and J. Feldman in [2], which asserts that if S is a quasitriangular operator in $\mathscr{L}(\mathscr{H})$ and there exists a sequence of polynomials $p_n(S)$ that converges in the norm topology to a nonzero compact operator, then S has a nontrivial invariant subspace.

The principal purpose of this note is to prove a generalization of this fundamental theorem. In order to state our main result, we introduce the following terminology and notation. If $T \in \mathcal{L}(\mathcal{H})$, we denote by $\mathcal{P}(T)$ the subalgebra of $\mathcal{L}(\mathcal{H})$ that is the uniform closure of the set of all polynomials in T. Furthermore, we denote by $\mathcal{R}(T)$ the subalgebra of $\mathcal{L}(\mathcal{H})$ that is the uniform closure of the set of all rational functions of T (a rational function of T is an operator of the form $p(T)[q(T)]^{-1}$, where p and q are polynomials). It is well known that $\mathcal{R}(T)$ coincides with the uniform closure of the algebra of all analytic functions of T. For this reason, a subspace \mathcal{M} of \mathcal{H} is called an analytically invariant subspace for T (see [6]) if it is invariant under every operator in $\mathcal{R}(T)$. In general, an invariant subspace \mathcal{M} of an operator T need not be an analytically invariant subspace for T. In fact, it was shown in Lemma 2.2 of [6] that an invariant subspace \mathcal{M} of T is analytically invariant for T if and only if the spectrum of $T \mid \mathcal{M}$ is contained in the spectrum of T.

Our principal result is the following theorem.

THEOREM 1.1. Let S be a quasitriangular operator in $\mathcal{L}(\mathcal{H})$, and suppose that the algebra $\mathcal{R}(S)$ contains a nonzero compact operator. Then S has a nontrivial analytically invariant subspace.

Received June 19, 1972.

The authors acknowledge support from the National Science Foundation.

Michigan Math. J. 20 (1973).