EXTREMAL PROBLEMS IN ARBITRARY DOMAINS
T. W. Gamelin

1. INTRODUCTION

Let U be a domain in the extended complex plane C*, and let H®(U) be the uni-
form algebra of bounded analytic functions on U. Let L, Ly, ---, L_ be linear
functionals on H*(U), and let by, ***, b, be complex numbers. We are interested
in the following “Pick-Nevanlinna” extremal problem:

To maximize %L(f), among all functions f € H*(U) that satisfy the
(*)
conditions |f[ <1 and L;j(f) =b; (1 <j < m).

1.1 THEOREM. Suppose L, Ly, -, Ly, are continuous with respect to the
norm | - ||k of uniform convergence on X, for some compact subset K of U that
does not separate 9U. Suppose also that L is not a lineay combination of
Ly, -, Ly, , and that theve exists at least one competing function for (*). Then
there exists a unique extvemal function G for (*). The extremal function G has
modulus 1 on the Shilov boundary of H*(U), and it can be extended analytically
across each free analytic boundary avc of U.

There is an extensive literature on extremal problems for analytic functions, in
the case where U is bounded by analytic curves. For early references, see Z.
Nehari’s expository article [10]. The paper of A. J. Macintyre and W. W. Rogosinski
[9] has a good introduction and bibliography, covering the case in which U is the unit
disc, while the paper of H. L. Royden [11] deals with finite bordered Riemann sur-
faces. Arbitrary domains have been treated by S. Ya. Havinson [7] and S. D. Fisher
[2], [3], and in spirit our work is based on that of Fisher.

The existence assertion of Theorem 1.1 follows immediately from the compact-
ness of the family of competing functions. The uniqueness of the extremal function
can be proved most easily by the technique of Fisher [2]. That the Ahlfors functions
of arbitrary domains have the properties in Theorem 1.1 has already been estab-
lished by Fisher [2], [3]. Our contribution is to extend these results to a more gen-
eral class of extremal problems. The extension is not trivial, though, and the main
point of the proof is the use of the separation theorem in Section 5 to reduce the
problem (*) to a more tractable problem.

That the extremal function G has modulus 1 on the Shilov boundary can be con-
verted into information concerning the cluster behavior of G. As a simple conse-
quence of work in [5] and [6], we shall obtain the following corollary, which improves
upon the corresponding results in [2] and [7].

1.2 COROLLARY. If w is an essential boundary point of U, then the cluster set
of the extremal function G at w either coincides with the closed unit disc, or else it
lies on the unit civcle.
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