THE ESSENTIAL RANGE OF A FUNCTION OF CLASS $H^{\infty} + C$

Lawrence Zalcman

Let Δ and T denote the open unit disc and the unit circle. Write C = C(T), and denote by $\operatorname{H}^{\infty} = \operatorname{H}^{\infty}(T)$ the subalgebra of $\operatorname{L}^{\infty}(T)$ consisting of the boundary functions (in the sense of radial limits) of bounded analytic functions on Δ . E. M. Klein has asked whether a nonconstant function in $\operatorname{H}^{\infty} + C$ can have a countable essential range. Negative answers have been given by Matthew Lee, who used operator-theoretic techniques, and by Colin Graham [2], who employed methods of Banach algebras. We shall prove a somewhat stronger result, using only simple function theory.

We require some notation from the theory of cluster sets; see [1] for references and an extended treatment. Briefly, for a function h defined on Δ , the *cluster set* at $e^{i\theta}$ (denoted by $C(h, e^{i\theta})$) is the set of all limiting values approached by h as $z \to e^{i\theta}$ unrestrictedly in Δ . Analogously, $C_{\rho}(h, e^{i\theta})$ is the set of cluster values of h as $z \to e^{i\theta}$ radially. Finally, we define $C_{R \setminus E}(h, e^{i\theta})$, the boundary radial cluster set modulo E of h at $e^{i\theta}$, by the condition that $w \in C_{R \setminus E}(h, e^{i\theta})$ provided there exist sequences $\{\theta_n\}$ and $\{w_n\}$ such that $\theta_n \to \theta$, $e^{i\theta_n} \not\in E \cup \{e^{i\theta}\}$, $w_n \in C_{\rho}(h, e^{i\theta_n})$, and $w_n \to w$.

We need the following elementary version of Iversen's theorem (see [1, p. 98]).

LEMMA. Let $h \in H^{\infty}(\Delta)$, and let $E \subset T$ have measure zero. Then $C_{R \setminus E}(h, e^{i\theta}) \supset \partial C(h, e^{i\theta})$ for every point of T.

The proof follows easily from the Poisson integral representation together with the argument of [1, p. 91].

We can now prove our result.

THEOREM. Let $h \in H^{\infty}(T)$, and suppose h is (essentially) discontinuous at $e^{i\theta}$. Then the essential range of h at $e^{i\theta}$ contains a continuum (and is therefore uncountable).

Proof. Identifying h with its interior function on Δ , we see that $C(h, e^{i\theta})$ is nontrivial. The boundary $\partial C(h, e^{i\theta})$ of this connected set is again nontrivial, since h is bounded. We shall now show that each point w in $\partial C(h, e^{i\theta})$ is in the essential range of h at $e^{i\theta}$.

Indeed, suppose that the point w is an exception. Then we can find an $\epsilon>0$ and a neighborhood U in T of $e^{i\,\theta}$ such that the set

$$E_1$$
 = $\left\{e^{i\theta}\colon e^{i\theta}\in U, \mid h(e^{i\theta}) - w \mid < \epsilon\right\}$

has measure zero. Letting E_2 denote the set of points on T where the radial limit of h fails to exist, and setting $E = E_1 \cup E_2$, we obtain a contradiction to the lemma.

Received March 31, 1972.

This research was supported in part by National Science Foundation Grant GP 25084.

Michigan Math. J. 19 (1972).